Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

On the influence of wind and waves on underwater irradiance fluctuations

2012, Hieronymi, M., Macke, A.

The influence of various wind and wave conditions on the variability of downwelling irradiance Ed (490 nm) in water is subject of this study. The work is based on a two-dimensional Monte Carlo radiative transfer model with high spatial resolution. The model assumes conditions that are ideal for wave focusing, thus simulation results reveal the upper limit for light fluctuations. Local wind primarily determines the steepness of capillary-gravity waves which in turn dominate the irradiance variability near the surface. Down to 3 m depth, maximum irradiance peaks that exceed the mean irradiance Ed by a factor of more than 7 can be observed at low wind speeds up to 5 m s−1. The strength of irradiance fluctuations can be even amplified under the influence of higher ultra-gravity waves; thereby peaks can exceed 11 Ed. Sea states influence the light field much deeper; gravity waves can cause considerable irradiance variability even at 100 m depth. The simulation results show that under realistic conditions 50% radiative enhancements compared to the mean can still occur at 30 m depth. At greater depths, the underwater light variability depends on the wave steepness of the characteristic wave of a sea state; steeper waves cause stronger light fluctuations.

Loading...
Thumbnail Image
Item

Thermal IR radiative properties of mixed mineral dust and biomass aerosol during SAMUM-2

2011, Köhler, Claas H., Trautmann, Thomas, Lindermeir, Erwin, Vreeling, Willem, Lieke, Kirsten, Kandler, Konrad, Weinzierl, Bernadett, Groß, Silke, Tesche, Matthias, Wendisch, Manfred

Ground-based high spectral resolution measurements of downwelling radiances from 800 to 1200 cm−1 were conducted between 20 January and 6 February 2008 within the scope of the SAMUM-2 field experiment. We infer the spectral signature of mixed biomass burning/mineral dust aerosols at the surface from these measurements and at top of the atmosphere from IASI observations. In a case study for a day characterized by the presence of high loads of both dust and biomass we attempt a closure with radiative transfer simulations assuming spherical particles. A detailed sensitivity analysis is performed to investigate the effect of uncertainties in the measurements ingested into the simulation on the simulated radiances. Distinct deviations between modelled and observed radiances are limited to a spectral region characterized by resonance bands in the refractive index. A comparison with results obtained during recent laboratory studies and field experiments reveals, that the deviations could be caused by the aerosol particles’ non-sphericity, although an unequivocal discrimination from measurement uncertainties is not possible. Based on radiative transfer simulations we estimate the aerosol’s direct radiative effect in the atmospheric window region to be 8 W m−2 at the surface and 1 W m−2 at top of the atmosphere.