Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Coincidences of climate extremes and anomalous vegetation responses: Comparing tree ring patterns to simulated productivity

2015, Rammig, A., Wiedermann, M., Donges, J.F., Babst, F., von Bloh, W., Frank, D., Thonicke, K., Mahecha, M.D.

Climate extremes can trigger exceptional responses in terrestrial ecosystems, for instance by altering growth or mortality rates. Such effects are often manifested in reductions in net primary productivity (NPP). Investigating a Europe-wide network of annual radial tree growth records confirms this pattern: we find that 28% of tree ring width (TRW) indices are below two standard deviations in years in which extremely low precipitation, high temperatures or the combination of both noticeably affect tree growth. Based on these findings, we investigate possibilities for detecting climate-driven patterns in long-term TRW data to evaluate state-of-the-art dynamic vegetation models such as the Lund-Potsdam-Jena dynamic global vegetation model for managed land (LPJmL). The major problem in this context is that LPJmL simulates NPP but not explicitly the radial tree growth, and we need to develop a generic method to allow for a comparison between simulated and observed response patterns. We propose an analysis scheme that quantifies the coincidence rate of climate extremes with some biotic responses (here TRW or simulated NPP). We find a relative reduction of 34% in simulated NPP during precipitation, temperature and combined extremes. This reduction is comparable to the TRW response patterns, but the model responds much more sensitively to drought stress. We identify 10 extreme years during the 20th century during which both model and measurements indicate high coincidence rates across Europe. However, we detect substantial regional differences in simulated and observed responses to climatic extreme events. One explanation for this discrepancy could be the tendency of tree ring data to originate from climatically stressed sites. The difference between model and observed data is amplified by the fact that dynamic vegetation models are designed to simulate mean ecosystem responses on landscape or regional scales. We find that both simulation results and measurements display carry-over effects from climate anomalies during the previous year. We conclude that radial tree growth chronologies provide a suitable basis for generic model benchmarks. The broad application of coincidence analysis in generic model benchmarks along with an increased availability of representative long-term measurements and improved process-based models will refine projections of the long-term carbon balance in terrestrial ecosystems.

Loading...
Thumbnail Image
Item

Impact of droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation models

2014, Van Oijen, M., Balkovi, J., Beer, C., Cameron, D.R., Ciais, P., Cramer, W., Kato, T., Kuhnert, M., Martin, R., Myneni, R., Rammig, A., Rolinski, S., Soussana, J.-F., Thonicke, K., Van der Velde, M., Xu, L.

We analyse how climate change may alter risks posed by droughts to carbon fluxes in European ecosystems. The approach follows a recently proposed framework for risk analysis based on probability theory. In this approach, risk is quantified as the product of hazard probability and ecosystem vulnerability. The probability of a drought hazard is calculated here from the Standardized Precipitation–Evapotranspiration Index (SPEI). Vulnerability is calculated from the response to drought simulated by process-based vegetation models. We use six different models: three for generic vegetation (JSBACH, LPJmL, ORCHIDEE) and three for specific ecosystems (Scots pine forests: BASFOR; winter wheat fields: EPIC; grasslands: PASIM). The periods 1971–2000 and 2071–2100 are compared. Climate data are based on gridded observations and on output from the regional climate model REMO using the SRES A1B scenario. The risk analysis is carried out for ~ 18 000 grid cells of 0.25 × 0.25° across Europe. For each grid cell, drought vulnerability and risk are quantified for five seasonal variables: net primary and ecosystem productivity (NPP, NEP), heterotrophic respiration (Rh), soil water content and evapotranspiration. In this analysis, climate change leads to increased drought risks for net primary productivity in the Mediterranean area: five of the models estimate that risk will exceed 15%. The risks increase mainly because of greater drought probability; ecosystem vulnerability will increase to a lesser extent. Because NPP will be affected more than Rh, future carbon sequestration (NEP) will also be at risk predominantly in southern Europe, with risks exceeding 0.25 g C m−2 d−1 according to most models, amounting to reductions in carbon sequestration of 20 to 80%.

Loading...
Thumbnail Image
Item

Diverging importance of drought stress for maize and winter wheat in Europe

2018, Webber, Heidi, Ewert, Frank, Olesen, Jørgen E., Müller, Christoph, Fronzek, Stefan, Ruane, Alex C., Bourgault, Maryse, Martre, Pierre, Ababaei, Behnam, Bindi, Marco, Ferrise, Roberto, Finger, Robert, Fodor, Nándor, Gabaldón-Leal, Clara, Gaiser, Thomas, Jabloun, Mohamed, Kersebaum, Kurt-Christian, Lizaso, Jon I., Lorite, Ignacio J., Manceau, Loic, Moriondo, Marco, Nendel, Claas, Rodríguez, Alfredo, Ruiz-Ramos, Margarita, Semenov, Mikhail A., Siebert, Stefan, Stella, Tommaso, Stratonovitch, Pierre, Trombi, Giacomo, Wallach, Daniel

Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.

Loading...
Thumbnail Image
Item

A prequel to the Dantean Anomaly: The precipitation seesaw and droughts of 1302 to 1307 in Europe

2020, Bauch, Martin, Labbé, Thomas, Engel, Annabell, Seifert, Patric

The cold/wet anomaly of the 1310s ("Dantean Anomaly") has attracted a lot of attention from scholars, as it is commonly interpreted as a signal of the transition between the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). The huge variability that can be observed during this decade, like the high interannual variability observed in the 1340s, has been highlighted as a side effect of this rapid climatic transition. In this paper, we demonstrate that a multiseasonal drought of almost 2 years occurred in the Mediterranean between 1302 and 1304, followed by a series of hot, dry summers north of the Alps from 1304 to 1306. We suggest that this outstanding dry anomaly, unique in the 13th and 14th centuries, together with cold anomalies of the 1310s and the 1340s, is part of the climatic shift from the MCA to the LIA. Our reconstruction of the predominant weather patterns of the first decade of the 14th century based on both documentary and proxy data identifies multiple European precipitation seesaw events between 1302 and 1307, with similarities to the seesaw conditions which prevailed over continental Europe in 2018. It can be debated to what extent the 1302 1307 period can be compared to what is currently discussed regarding the influence of the phenomenon of Arctic amplification on the increasing frequency of persistent stable weather patterns that have occurred since the late 1980s. Additionally, this paper deals with socioeconomic and cultural responses to drought risks in the Middle Ages as outlined in contemporary sources and provides evidence that there is a significant correlation between pronounced dry seasons and fires that devastated cities. © 2020 Copernicus GmbH. All rights reserved.