Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The Dust Emission Potential of Agricultural‐Like Fires—Theoretical Estimates From Two Conceptually Different Dust Emission Parameterizations

2021, Wagner, R., Schepanski, K., Klose, M.

Agricultural fires affecting grass-, crop- and shrublands represent a major, mainly anthropogenically driven disturbance of many ecosystems. In addition to emissions of carbonaceous aerosol, they were found to inject also mineral dust particles into the atmosphere. The fires can significantly modulate the near-surface wind patterns so that conditions suitable for dust emission occur. However, the exact emission mechanism has not been investigated so far, but is inevitable for the understanding of its impacts on the Earth system. Here, we test two dust emission parameterizations representing saltation bombardment (SALT) and direct aerodynamic dust entrainment by (convective) turbulence (convective turbulent dust emission, CTDE) in the context of fire-modulated wind patterns using large-eddy simulation with an idealized setup to represent typical agricultural fire settings. Favorable aerodynamic preconditions for the initialization of both emission processes are found, however, with sometimes significant differences in dust emission flux depending on specific wind and fire properties. The strong fire-induced modulations of the instantaneous momentum flux suggest that CTDE can be a very potent emission process in the fire vicinity. Nevertheless, fire impacts on the friction velocity can be significant too, so that dust emission through SALT is facilitated as well. Ultimately, the specific aerodynamic conditions within pyro-convectively modulated wind patterns require the development of a parameterization that can describe these unique fire-related dust emissions and their influencing factors properly. This will finally allow for considering fire-induced dust emissions in aerosol-atmosphere models and an investigation of its atmospheric impacts such as on the radiation budget.

Loading...
Thumbnail Image
Item

Idealized large-eddy simulations of nocturnal low-level jets over subtropical desert regions and implications for dust-generating winds

2014, Heinold, Bernd, Knippertz, Peter, Beare, Robert J.

Nocturnal low-level jets (LLJs) are maxima in the wind profile, which often form above the stable nocturnal boundary layer. Over the Sahara, the world’s largest source of mineral dust, this phenomenon is of particular importance to the emission and transport of desert aerosol.We present the first ever detailed large-eddy simulations of dust-generating LLJs. Using sensitivity studies with the UK Met Office large-eddy model (LEM), two key controls of the nocturnal LLJ are investigated: surface roughness and the Coriolis force. Functional relationships derived from the LEM results help to identify optimal latitude–roughness configurations for a maximum LLJ enhancement. Ideal conditions are found in regions between 20 and 27◦N with roughness lengths >0.0001m providing long oscillation periods and large jet amplitudes. Typical LLJ enhancements reach up to 3.5ms−1 for geostrophic winds of 10ms−1. The findings are largely consistent with results from a theoretical LLJ model applied for comparison. The results demonstrate the importance of latitude and roughness in creating regional patterns of LLJ influence. Combining the functional relationships with high-resolution roughness data over northern Africa gives good agreement with the location of morning dust uplift in satellite observations. It is shown that shear-induced mixing plays an important role for the LLJ evolution and surface gustiness. With decreasing latitude the LLJ oscillation period is longer and, thus, shearinduced mixing is weaker, allowing a more stable nocturnal stratification to develop. This causes a later and more abrupt LLJ breakdown in the morning with stronger gusts, which can compensate for the slower LLJ evolution that leads to a weaker jet maximum. The findings presented here can serve as the first step towards a parametrization to improve the representationof the effectsofnocturnal LLJsondust emission in coarser-resolution models.