Search Results

Now showing 1 - 2 of 2
  • Item
    Identifying a Safe and Just Corridor for People and the Planet
    (Hoboken, NJ : Wiley-Blackwell, 2021) Rockström, Johan; Gupta, Joyeeta; Lenton, Timothy M.; Qin, Dahe; Lade, Steven J.; Abrams, Jesse F.; Jacobson, Lisa; Rocha, Juan C.; Zimm, Caroline; Bai, Xuemei; Bala, Govindasamy; Bringezu, Stefan; Broadgate, Wendy; Bunn, Stuart E.; DeClerck, Fabrice; Ebi, Kristie L.; Gong, Peng; Gordon, Chris; Kanie, Norichika; Liverman, Diana M.; Nakicenovic, Nebojsa; Obura, David; Ramanathan, Veerabhadran; Verburg, Peter H.; van Vuuren, Detlef P.; Winkelmann, Ricarda
    Keeping the Earth system in a stable and resilient state, to safeguard Earth's life support systems while ensuring that Earth's benefits, risks, and related responsibilities are equitably shared, constitutes the grand challenge for human development in the Anthropocene. Here, we describe a framework that the recently formed Earth Commission will use to define and quantify target ranges for a “safe and just corridor” that meets these goals. Although “safe” and “just” Earth system targets are interrelated, we see safe as primarily referring to a stable Earth system and just targets as being associated with meeting human needs and reducing exposure to risks. To align safe and just dimensions, we propose to address the equity dimensions of each safe target for Earth system regulating systems and processes. The more stringent of the safe or just target ranges then defines the corridor. Identifying levers of social transformation aimed at meeting the safe and just targets and challenges associated with translating the corridor to actors at multiple scales present scope for future work.
  • Item
    Simulating the Earth system response to negative emissions
    (Bristol : IOP Publishing, 2016) Jones, C.D.; Ciais, P.; Davis, S.J.; Friedlingstein, P.; Gasser, T.; Peters, G.P.; Rogelj, J.; van Vuuren, D.P.; Canadell, J.G.; Cowie, A.; Jackson, R.B.; Jonas, M.; Kriegler, E.; Littleton, E.; Lowe, J.A.; Milne, J.; Shrestha, G.; Smith, P.; Torvanger, A.; Wiltshire, A.
    Natural carbon sinks currently absorb approximately half of the anthropogenic CO2 emitted by fossil fuel burning, cement production and land-use change. However, this airborne fraction may change in the future depending on the emissions scenario. An important issue in developing carbon budgets to achieve climate stabilisation targets is the behaviour of natural carbon sinks, particularly under low emissions mitigation scenarios as required to meet the goals of the Paris Agreement. A key requirement for low carbon pathways is to quantify the effectiveness of negative emissions technologies which will be strongly affected by carbon cycle feedbacks. Here we find that Earth system models suggest significant weakening, even potential reversal, of the ocean and land sinks under future low emission scenarios. For the RCP2.6 concentration pathway, models project land and ocean sinks to weaken to 0.8 ± 0.9 and 1.1 ± 0.3 GtC yr−1 respectively for the second half of the 21st century and to −0.4 ± 0.4 and 0.1 ± 0.2 GtC yr−1 respectively for the second half of the 23rd century. Weakening of natural carbon sinks will hinder the effectiveness of negative emissions technologies and therefore increase their required deployment to achieve a given climate stabilisation target. We introduce a new metric, the perturbation airborne fraction, to measure and assess the effectiveness of negative emissions.