Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

On microphysical processes of noctilucent clouds (NLC): Observations and modeling of mean and width of the particle size-distribution

2010, Baumgarten, G., Fiedler, J., Rapp, M.

Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02 for mean particle sizes up to 40 nm. For the vertically resolved particle properties (Δz = Combining double low line 0.15 km) the slope is comparable and about 0.39±0.03. For particles larger than 40 nm the distribution width becomes nearly independent of particle size and even decreases in the lower part of the layer. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements. © 2010 Author(s).

Loading...
Thumbnail Image
Item

Utility of Hovmöller diagrams to diagnose Rossby wave trains

2011, Glatt, I., Dörnbrack, A., Jones, S., Keller, J., Martius, O., Müller, A., Peters, D.H.W., Wirth, V.

The study investigates and compares various methods that aim to diagnose Rossby wave trains with the help of Hovmöller diagrams. Three groups of methods are distinguished: The first group contains trough-and-ridge Hovmöller diagrams of the meridional wind; they provide full phase information, but differ in the method for latitudinal averaging or weighting. The second group aims to identify Rossby wave trains as a whole, discounting individual troughs and ridges. The third group contains diagnostics which focus on physical mechanisms during the different phases of a Rossby wave train life cycle; they include the analysis of eddy kinetic energy and methods for quantifying Rossby wave breaking. The different methods are analysed and systematically compared with each other in the framework of a two-month period in fall 2008. Each method more or less serves its designed purpose, but they all have their own strengths and weaknesses. Notable differences between the individual methods render an objective identification of a Rossby wave train somewhat elusive. Nevertheless, the combination of several techniques provides a rather comprehensive picture of the Rossby wave train life cycle, being broadly consistent with the expected behaviour from previous theoretical analysis.