Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Some remarks on a model for rate-independent damage in thermo-visco-elastodynamics

2015, Lazzaroni, Giuliano, Rossi, Riccarda, Thomas, Marita, Toader, Rodica

This note deals with the analysis of a model for partial damage, where the rate-independent, unidirectional ow rule for the damage variable is coupled with the rate-dependent heat equation, and with the momentum balance featuring inertia and viscosity according to Kelvin-Voigt rheology. The results presented here combine the approach from Roubí£ek [Rou09, Rou10] with the methods from Lazzaroni/Rossi/Thomas/Toader [LRTT14]. The present analysis encompasses, dierently from [Rou10], the monotonicity in time of damage and the dependence of the viscous tensor on damage and temperature, and, unlike [LRTT14], a nonconstant heat capacity and a time-dependent Dirichlet loading.

Loading...
Thumbnail Image
Item

Homogenization of elastic waves in fluid-saturated porous media using the Biot model

2012, Mielke, Alexander, Rohan, Eduard

We consider periodically heterogeneous fluid-saturated poroelastic media described by the Biot model with inertia effects. The weak and semistrong formulations for displacement, seepage and pressure fields involve three equations expressing the momentum and mass balance and the Darcy law. Using the two-scale homogenization method we obtain the limit two-scale problem and prove the existence and uniqueness of its weak solutions. The Laplace transformation in time is used to decouple the macroscopic and microscopic scales. It is shown that the seepage velocity is eliminated form the macroscopic equations involving strain and pressure fields only. The plane harmonic wave propagation is studied using an example of layered medium. Illustrations show some influence of the orthotropy on the dispersion phenomena.

Loading...
Thumbnail Image
Item

Rate-independent damage in thermo-viscoelastic materials with inertia

2014, Lazzaroni, Giuliano, Rossi, Riccarda, Thomas, Marita, Toader, Rodica

We present a model for rate-independent, unidirectional, partial damage in visco-elastic materials with inertia and thermal effects. The damage process is modeled by means of an internal variable, governed by a rate-independent flow rule. The heat equation and the momentum balance for the displacements are coupled in a highly nonlinear way. Our assumptions on the corresponding energy functional also comprise the case of the Ambrosio-Tortorelli phase-field model (without passage to the brittle limit). We discuss a suitable weak formulation and prove an existence theorem obtained with the aid of a (partially) decoupled time-discrete scheme and variational convergence methods. We also carry out the asymptotic analysis for vanishing viscosity and inertia and obtain a fully rate-independent limit model for displacements and damage, which is independent of temperature.