Search Results

Now showing 1 - 5 of 5
  • Item
    Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications
    (Washington, DC : American Chemical Society, 2014) Martinez-Cisneros, C.S.; Sanchez, S.; Xi, W.; Schmidt, O.G.
    We present ultracompact three-dimensional tubular structures integrating Au-based electrodes as impedimetric microsensors for the in-flow determination of mono- and divalent ionic species and HeLa cells. The microsensors show an improved performance of 2 orders of magnitude (limit of detection = 0.1 nM for KCl) compared to conventional planar conductivity detection systems integrated in microfluidic platforms and the capability to detect single HeLa cells in flowing phosphate buffered saline. These highly integrated conductivity tubular sensors thus open new possibilities for lab-in-a-tube devices for bioapplications such as biosensing and bioelectronics.
  • Item
    Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes
    (London : Nature Publishing Group, 2019) Li, Y.; Kovačič, M.; Westphalen, J.; Oswald, S.; Ma, Z.; Hänisch, C.; Will, P.-A.; Jiang, L.; Junghaehnel, M.; Scholz, R.; Lenk, S.; Reineke, S.
    Organic light-emitting diodes (OLEDs) suffer from notorious light trapping, resulting in only moderate external quantum efficiencies. Here, we report a facile, scalable, lithography-free method to generate controllable nanostructures with directional randomness and dimensional order, significantly boosting the efficiency of white OLEDs. Mechanical deformations form on the surface of poly(dimethylsiloxane) in response to compressive stress release, initialized by reactive ions etching with periodicity and depth distribution ranging from dozens of nanometers to micrometers. We demonstrate the possibility of independently tuning the average depth and the dominant periodicity. Integrating these nanostructures into a two-unit tandem white organic light-emitting diode, a maximum external quantum efficiency of 76.3% and a luminous efficacy of 95.7 lm W−1 are achieved with extracted substrate modes. The enhancement factor of 1.53 ± 0.12 at 10,000 cd m−2 is obtained. An optical model is built by considering the dipole orientation, emitting wavelength, and the dipole position on the sinusoidal nanotexture.
  • Item
    Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes
    (London : Nature Publishing Group, 2017) Boehnke, A.; Martens, U.; Sterwerf, C.; Niesen, A.; Huebner, T.; Von Der Ehe, M.; Meinert, M.; Kuschel, T.; Thomas, A.; Heiliger, C.; Münzenberg, M.; Reiss, G.
    Spin caloritronics studies the interplay between charge-, heat- and spin-currents, which are initiated by temperature gradients in magnetic nanostructures. A plethora of new phenomena has been discovered that promises, e.g., to make wasted heat in electronic devices useable or to provide new read-out mechanisms for information. However, only few materials have been studied so far with Seebeck voltages of only some microvolt, which hampers applications. Here, we demonstrate that half-metallic Heusler compounds are hot candidates for enhancing spin-dependent thermoelectric effects. This becomes evident when considering the asymmetry of the spin-split density of electronic states around the Fermi level that determines the spin-dependent thermoelectric transport in magnetic tunnel junctions. We identify Co2FeAl and Co2FeSi Heusler compounds as ideal due to their energy gaps in the minority density of states, and demonstrate devices with substantially larger Seebeck voltages and tunnel magneto-Seebeck effect ratios than the commonly used Co-Fe-B-based junctions.
  • Item
    Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries
    ([London] : Nature Publishing Group UK, 2023) Sabaghi, Davood; Wang, Zhiyong; Bhauriyal, Preeti; Lu, Qiongqiong; Morag, Ahiud; Mikhailovia, Daria; Hashemi, Payam; Li, Dongqi; Neumann, Christof; Liao, Zhongquan; Dominic, Anna Maria; Nia, Ali Shaygan; Dong, Renhao; Zschech, Ehrenfried; Turchanin, Andrey; Heine, Thomas; Yu, Minghao; Feng, Xinliang
    The anion-intercalation chemistries of graphite have the potential to construct batteries with promising energy and power breakthroughs. Here, we report the use of an ultrathin, positively charged two-dimensional poly(pyridinium salt) membrane (C2DP) as the graphite electrode skin to overcome the critical durability problem. Large-area C2DP enables the conformal coating on the graphite electrode, remarkably alleviating the electrolyte. Meanwhile, the dense face-on oriented single crystals with ultrathin thickness and cationic backbones allow C2DP with high anion-transport capability and selectivity. Such desirable anion-transport properties of C2DP prevent the cation/solvent co-intercalation into the graphite electrode and suppress the consequent structure collapse. An impressive PF6−-intercalation durability is demonstrated for the C2DP-covered graphite electrode, with capacity retention of 92.8% after 1000 cycles at 1 C and Coulombic efficiencies of > 99%. The feasibility of constructing artificial ion-regulating electrode skins with precisely customized two-dimensional polymers offers viable means to promote problematic battery chemistries.
  • Item
    Technical feasibility study for production of tailored multielectrode arrays and patterning of arranged neuronal networks
    (San Francisco, CA : Public Library of Science (PLoS), 2018) Schürmann, M.; Shepheard, N.; Frese, N.; Geishendorf, K.; Sudhoff, H.; Gölzhäuser, A.; Rückert, U.; Kaltschmidt, C.; Kaltschmidt, B.; Thomas, A.
    In this manuscript, we first reveal a simple ultra violet laser lithographic method to design and produce plain tailored multielectrode arrays. Secondly, we use the same lithographic setup for surface patterning to enable controlled attachment of primary neuronal cells and help neurite guidance. For multielectrode array production, we used flat borosilicate glass directly structured with the laser lithography system. The multi layered electrode system consists of a layer of titanium coated with a layer of di-titanium nitride. Finally, these electrodes are covered with silicon nitride for insulation. The quality of the custom made multielectrode arrays was investigated by light microscopy, electron microscopy and X-ray diffraction. The performance was verified by the detection of action potentials of primary neurons. The electrical noise of the custom-made MEA was equal to commercially available multielectrode arrays. Additionally, we demonstrated that structured coating with poly lysine, obtained with the aid of the same lithographic system, could be used to attach and guide neurons to designed structures. The process of neuron attachment and neurite guidance was investigated by light microscopy and charged particle microscopy. Importantly, the utilization of the same lithographic system for MEA fabrication and poly lysine structuring will make it easy to align the architecture of the neuronal network to the arrangement of the MEA electrode.. In future studies, this will lead to multielectrode arrays, which are able to specifically attach neuronal cell bodies to their chemically defined electrodes and guide their neurites, gaining a controlled connectivity in the neuronal network. This type of multielectrode array would be able to precisely assign a signal to a certain neuron resulting in an efficient way for analyzing the maturation of the neuronal connectivity in small neuronal networks.