4 results
Search Results
Now showing 1 - 4 of 4
- ItemMultiphoton quantum-state engineering using conditional measurements(London : Nature Publ. Group, 2019) Magaña-Loaiza, Omar S.; de J. León-Montiel, Roberto; Perez-Leija, Armando; U’Ren, Alfred B.; You, Chenglong; Busch, Kurt; Lita, Adriana E.; Nam, Sae Woo; Mirin, Richard P.; Gerrits, ThomasThe quantum theory of electromagnetic radiation predicts characteristic statistical fluctuations for light sources as diverse as sunlight, laser radiation, and molecule fluorescence. Indeed, these underlying statistical fluctuations of light are associated with the fundamental physical processes behind their generation. In this contribution, we experimentally demonstrate that the manipulation of the quantum electromagnetic fluctuations of two-mode squeezed vacuum states leads to a family of quantum-correlated multiphoton states with tunable mean photon numbers and degree of correlation. Our technique relies on the use of conditional measurements to engineer the excitation mode of the field through the simultaneous subtraction of photons from two-mode squeezed vacuum states. The experimental generation of nonclassical multiphoton states by means of photon subtraction unveils novel mechanisms to control fundamental properties of light. As a remarkable example, we demonstrate the engineering of a quantum state of light with up to ten photons, exhibiting nearly Poissonian photon statistics, that constitutes an important step towards the generation of entangled lasers. Our technique enables a robust protocol to prepare quantum states with multiple photons in high-dimensional spaces and, as such, it constitutes a novel platform for exploring quantum phenomena in mesoscopic systems. © 2019, The Author(s).
- ItemLévy noise improves the electrical activity in a neuron under electromagnetic radiation(San Francisco, CA : Public Library of Science (PLoS), 2017) Wu, J.; Xu, Y.; Ma, J.As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Levy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Levy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Levy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Levy noise intensity are depicted. The increasing of Levy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Levy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Levy noise distribution are detected.
- ItemSpectral dynamics of shift current in ferroelectric semiconductor SbSI(Washington : National Academy of Sciences, 2019) Sotome, M.; Nakamura, M.; Fujioka, J.; Ogino, M.; Kaneko, Y.; Morimoto, T.; Zhang, Y.; Kawasaki, M.; Nagaosa, N.; Tokura, Y.; Ogawa, N.Photoexcitation in solids brings about transitions of electrons/ holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells.
- ItemPhotoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics([London] : Springer Nature, 2016) Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, RuthPhotochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions.