Search Results

Now showing 1 - 10 of 13
Loading...
Thumbnail Image
Item

Liquid-Phase Electron Microscopy for Soft Matter Science and Biology

2020, Wu, H., Friedrich, H., Patterson, J.P., Sommerdijk, N.A.J.M., de Jonge, N.

Innovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology. Both experimental design and applications of LP-EM for soft matter materials science and biological research are reviewed, and a perspective of possible future directions is given.

Loading...
Thumbnail Image
Item

Liquid-phase electron microscopy of molecular drug response in breast cancer cells reveals irresponsive cell subpopulations related to lack of HER2 homodimers

2017, Peckys, Diana B., Korf, Ulrike, Wiemann, Stefan, de Jonge, Niels

The development of drug resistance in cancer poses a major clinical problem. An example is human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer often treated with anti-HER2 antibody therapies, such as trastuzumab. Because drug resistance is rooted mainly in tumor cell heterogeneity, we examined the drug effect in different subpopulations of SKBR3 breast cancer cells and compared the results with those of a drugresistant cell line, HCC1954. Correlative light microscopy and liquid-phase scanning transmission electron microscopy were used to quantitatively analyze HER2 responses upon drug binding, whereby many tens of whole cells were imaged. Trastuzumab was found to selectively cross-link and down-regulate HER2 homodimers from the plasma membranes of bulk cancer cells. In contrast, HER2 resided mainly as monomers in rare subpopulations of resting and cancer stem cells (CSCs), and these monomers were not internalized after drug binding. The HER2 distribution was hardly influenced by trastuzumab for the HCC1954 cells. These findings show that resting cells and CSCs are irresponsive to the drug and thus point toward a molecular explanation behind the origin of drug resistance. This analytical method is broadly applicable to study membrane protein interactions in the intact plasma membrane, while accounting for cell heterogeneity.

Loading...
Thumbnail Image
Item

A correlative analysis of gold nanoparticles internalized by A549 cells

2014, Böse, Katharina, Koch, Marcus, Cavelius, Christian, Kiemer, Alexandra K., Kraegeloh, Annette

Fluorescently labeled nanoparticles are widely used to investigate nanoparticle cell interactions by fluorescence microscopy. Owing to limited lateral and axial resolution, nanostructures (<100 nm) cannot be resolved by conventional light micro­scopy techniques. Especially after uptake into cells, a common fate of the fluorescence label and the particle core cannot be taken for granted. In this study, a correlative approach is presented to image fluorescently labeled gold nanoparticles inside whole cells by correlative light and electron microscopy (CLEM). This approach allows for detection of the fluorescently labeled particle shell as well as for the gold core in one sample. In this setup, A549 cells are exposed to 8 nm Atto 647N-labeled gold nanoparticles (3.3 × 109 particles mL−1, 0.02 μg Au mL−1) for 5 h and are subsequently imaged by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Eight fluorescence signals located at different intracellular positions are further analyzed by TEM. Five of the eight fluorescence spots are correlated with isolated or agglomerated gold nanoparticles. Three fluorescence signals could not be related to the presence of gold, indicating a loss of the particle shell.

Loading...
Thumbnail Image
Item

Graphene Enclosure of Chemically Fixed Mammalian Cells for Liquid-Phase Electron Microscopy

2020, Blach, Patricia, Keskin, Sercan, de Jonge, Niels

A protocol is described for investigating the human epidermal growth factor receptor 2 (HER2) in the intact plasma membrane of breast cancer cells using scanning transmission electron microscopy (STEM). Cells of the mammalian breast cancer cell line SKBR3 were grown on silicon microchips with silicon nitride (SiN) windows. Cells were chemically fixed, and HER2 proteins were labeled with quantum dot nanoparticles (QDs), using a two-step biotin-streptavidin binding protocol. The cells were coated with multilayer graphene to maintain a hydrated state, and to protect them from electron beam damage during STEM. To examine the stability of the samples under electron beam irradiation, a dose series experiment was performed. Graphene-coated and non-coated samples were compared. Beam induced damage, in the form of bright artifacts, appeared for some non-coated samples at increased electron dose D, while no artifacts appeared on coated samples.

Loading...
Thumbnail Image
Item

Chemical Imaging of Mixed Metal Oxide Catalysts for Propylene Oxidation: From Model Binary Systems to Complex Multicomponent Systems

2021, Sprenger, Paul, Stehle, Matthias, Gaur, Abhijeet, Weiß, Jana, Brueckner, Dennis, Zhang, Yi, Garrevoet, Jan, Suuronen, Jussi‐Petteri, Thomann, Michael, Fischer, Achim, Grunwaldt, Jan‐Dierk, Sheppard, Thomas L.

Industrially-applied mixed metal oxide catalysts often possess an ensemble of structural components with complementary functions. Characterisation of these hierarchical systems is challenging, particularly moving from binary to quaternary systems. Here a quaternary Bi−Mo−Co−Fe oxide catalyst showing significantly greater activity than binary Bi−Mo oxides for selective propylene oxidation to acrolein was studied with chemical imaging techniques from the microscale to nanoscale. Conventional techniques like XRD and Raman spectroscopy could only distinguish a small number of components. Spatially-resolved characterisation provided a clearer picture of metal oxide phase composition, starting from elemental distribution by SEM-EDX and spatially-resolved mapping of metal oxide components by 2D Raman spectroscopy. This was extended to 3D using multiscale hard X-ray tomography with fluorescence, phase, and diffraction contrast. The identification and co-localisation of phases in 2D and 3D can assist in rationalising catalytic performance during propylene oxidation, based on studies of model, binary, or ternary catalyst systems in literature. This approach is generally applicable and attractive for characterisation of complex mixed metal oxide systems. © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

The 2018 correlative microscopy techniques roadmap

2018, Ando, Toshio, Bhamidimarri, Satya Prathyusha, Brending, Niklas, Colin-York, H, Collinson, Lucy, De Jonge, Niels, de Pablo, P J, Debroye, Elke, Eggeling, Christian, Franck, Christian, Fritzsche, Marco, Gerritsen, Hans, Giepmans, Ben N G, Grunewald, Kay, Hofkens, Johan, Hoogenboom, Jacob P, Janssen, Kris P F, Kaufmann, Rainer, Klumpermann, Judith, Kurniawan, Nyoman, Kusch, Jana, Liv, Nalan, Parekh, Viha, Peckys, Diana B, Rehfeldt, Florian, Reutens, David C, Roeffaers, Maarten B J, Salditt, Tim, Schaap, Iwan A T, Schwarz, Ulrich S, Verkade, Paul, Vogel, Michael W, Wagner, Richard, Winterhalter, Mathias, Yuan, Haifeng, Zifarelli, Giovanni

Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell–cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure–function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.

Loading...
Thumbnail Image
Item

Anharmonic strong-coupling effects at the origin of the charge density wave in CsV3Sb5

2024, He, Ge, Peis, Leander, Cuddy, Emma Frances, Zhao, Zhen, Li, Dong, Zhang, Yuhang, Stumberger, Romona, Moritz, Brian, Yang, Haitao, Gao, Hongjun, Devereaux, Thomas Peter, Hackl, Rudi

The formation of charge density waves is a long-standing open problem, particularly in dimensions higher than one. Various observations in the vanadium antimonides discovered recently further underpin this notion. Here, we study the Kagome metal CsV3Sb5 using polarized inelastic light scattering and density functional theory calculations. We observe a significant gap anisotropy with 2Δmax/kBTCDW≈20, far beyond the prediction of mean-field theory. The analysis of the A1g and E2g phonons, including those emerging below TCDW, indicates strong phonon-phonon coupling, presumably mediated by a strong electron-phonon interaction. Similarly, the asymmetric Fano-type lineshape of the A1g amplitude mode suggests strong electron-phonon coupling below TCDW. The large electronic gap, the enhanced anharmonic phonon-phonon coupling, and the Fano shape of the amplitude mode combined are more supportive of a strong-coupling phonon-driven charge density wave transition than of a Fermi surface instability or an exotic mechanism in CsV3Sb5.

Loading...
Thumbnail Image
Item

Confined crystals of the smallest phase-change material

2013, Giusca, C.E., Stolojan, V., Sloan, J., Börrnert, F., Shiozawa, H., Sader, K., Rümmeli, M.H., Büchner, B., Silva, S.R.P.

The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.

Loading...
Thumbnail Image
Item

HelixJet: An innovative plasma source for next-generation additive manufacturing (3D printing)

2020, Schäfer, Jan, Quade, Antje, Abrams, Kerry J., Sigeneger, Florian, Becker, Markus M., Majewski, Candice, Rodenburg, Cornelia

A novel plasma source (HelixJet) for use in additive manufacturing (AM)/3D printing is proposed. The HelixJet is a capacitively coupled radio frequency plasma with a double-helix electrode configuration that generates a surprisingly stable and homogeneous glow plasma at low flow rates of argon and its mixtures at atmospheric pressure. The HelixJet was tested on three polyamide powders usually used to produce parts by laser sintering, a powder-based AM process, to form local deposits. The chemical composition of such plasma-printed samples is compared with thermally produced and laser-sintered samples with respect to differences in morphology that result from the different thermal cycles on several length scales. Plasma prints exhibit unique features attributable to the nonequilibrium chemistry and to the high-speed heat exchange.

Loading...
Thumbnail Image
Item

EGFR Expression in HER2-Driven Breast Cancer Cells

2020, Weinberg, Florian, Peckys, Diana B., de Jonge, Niels

The epidermal growth factor receptor HER2 is overexpressed in 20% of breast cancer cases. HER2 is an orphan receptor that is activated ligand-independently by homodimerization. In addition, HER2 is able to heterodimerize with EGFR, HER3, and HER4. Heterodimerization has been proposed as a mechanism of resistance to therapy for HER2 overexpressing breast cancer. Here, a method is presented for the simultaneous detection of individual EGFR and HER2 receptors in the plasma membrane of breast cancer cells via specific labeling with quantum dot nanoparticles (QDs). Correlative fluorescence microscopy and liquid phase electron microscopy were used to analyze the plasma membrane expression levels of both receptors in individual intact cells. Fluorescent single-cell analysis of SKBR3 breast cancer cells dual-labeled for EGFR and HER2 revealed a heterogeneous expression for receptors within both the cell population as well as within individual cells. Subsequent electron microscopy of individual cells allowed the determination of individual receptors label distributions. QD-labeled EGFR was observed with a surface density of (0.5–5) × 101 QDs/µm2, whereas labeled HER2 expression was higher ranging from (2–10) × 102 QDs/µm2. Although most SKBR3 cells expressed low levels of EGFR, an enrichment was observed at large plasma membrane protrusions, and amongst a newly discovered cellular subpopulation termed EGFR-enriched cells.