Search Results

Now showing 1 - 3 of 3
  • Item
    The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design
    (München : European Geopyhsical Union, 2014) Tjernström, M.; Leck, C.; Birch, C.E.; Bottenheim, J.W.; Brooks, B.J.; Brooks, I.M.; Bäcklin, L.; Chang, R.Y.-W.; de Leeuw, G.; Di Liberto, L.; de la Rosa, S.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; Johnston, P.; Knulst, J.; Martin, M.; Matrai, P.A.; Mauritsen, T.; Müller, M.; Norris, S.J.; Orellana, M.V.; Orsini, D.A.; Paatero, J.; Persson, P.O.G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M.D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C.R.
    The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol–cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007–2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.
  • Item
    Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling
    (Cambridge : RSC Publ., 2016) Lee, Juhan; Krüner, Benjamin; Tolosa, Aura; Sathyamoorthi, Sethuraman; Kim, Daekyu; Choudhury, Soumyadip; Seo, Kum-Hee; Presser, Volker
    We introduce a high performance hybrid electrochemical energy storage system based on an aqueous electrolyte containing tin sulfate (SnSO4) and vanadyl sulfate (VOSO4) with nanoporous activated carbon. The energy storage mechanism of this system benefits from the unique synergy of concurrent electric double-layer formation, reversible tin redox reactions, and three-step redox reactions of vanadium. The hybrid system showed excellent electrochemical properties such as a promising energy capacity (ca. 75 W h kg−1, 30 W h L−1) and a maximum power of up to 1.5 kW kg−1 (600 W L−1, 250 W m−2), exhibiting capacitor-like galvanostatic cycling stability and a low level of self-discharging rate.
  • Item
    Implementation and Evaluation of Irrigation Techniques in the Community Land Model
    (Fort Collins, Colo. : [Verlag nicht ermittelbar], 2022) Yao, Yi; Vanderkelen, Inne; Lombardozzi, Danica; Swenson, Sean; Lawrence, David; Jägermeyr, Jonas; Grant, Luke; Thiery, Wim
    Several previous studies have highlighted the irrigation-induced impacts on the global and regional water cycle, energy budget, and near-surface climate. While land models are widely used to address this question, the implementations of irrigation in these models vary in complexity. Here, we expand the representation of irrigation in Community Land Model to enable six different irrigation methods. We find that using a combination of irrigation methods, including default, sprinkler, flood and paddy techniques performs best as determined by evaluating the simulated irrigation water withdrawals against observations, and therefore select this combination as the new irrigation scheme. Then, the impact of the new irrigation scheme on surface fluxes is evaluated and detected using single-point simulations. Finally, the global and regional irrigation-induced impacts on surface energy and water fluxes are compared using both the original and the new irrigation scheme. The new irrigation scheme substantially reduces the bias and root-mean-square error of simulated irrigation water withdrawal in the USA and other countries, but considerably overestimates withdrawals in Central China. Results of single-point experiments show that different irrigation methods have different effects on surface fluxes, while the magnitudes are small. At the global scale, the new scheme enlarges the irrigation-induced impacts on water and energy variables relative to the original scheme, with varying magnitudes across regions. Overall, our results suggest that this newly developed scheme is a better tool for simulating irrigation-induced impacts on climate, and highlight the added value of incorporating human water management in Earth system models.