Search Results

Now showing 1 - 2 of 2
  • Item
    Delayed relaxation of highly excited naphthalene cations
    (Bristol : IOP Publ., 2020) Reitsma, G.; Hummert, J.; Dura, J.; Loriot, V.; Vrakking, M.J.J.; Lépine, F.; Kornilov, O.
    The efficiency of energy transfer in ultrafast electronic relaxation of molecules depends strongly on the complex interplay between electronic and nuclear motion. In this study we use wavelength-selected XUV pulses to induce relaxation dynamics of highly excited cationic states of naphthalene. Surprisingly, the observed relaxation lifetimes increase with the cationic excitation energy. We propose that this is a manifestation of a quantum mechanical population trapping that leads to delayed relaxation of molecules in the regions with a high density of excited states. © 2019 Published under licence by IOP Publishing Ltd.
  • Item
    Nonlinearly-enhanced energy transport in many dimensional quantum chaos
    (London : Nature Publishing Group, 2013) Brambila, D.S.; Fratalocchi, A.
    By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.