Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion

2021, Zhang, Qihao, Huang, Aibin, Ai, Xin, Liao, Jincheng, Song, Qingfeng, Reith, Heiko, Cao, Xun, Fang, Yueping, Schierning, Gabi, Nielsch, Kornelius, Bai, Shengqiang, Chen, Lidong

Integrating transparent solar-harvesting systems into windows can provide renewable on-site energy supply without altering building aesthetics or imposing further design constraints. Transparent photovoltaics have shown great potential, but the increased transparency comes at the expense of reduced power-conversion efficiency. Here, a new technology that overcomes this limitation by combining solar-thermal-electric conversion with a material's wavelength-selective absorption is presented. A wavelength-selective film consisting of Cs0.33WO3 and resin facilitates high visible-light transmittance (up to 88%) and outstanding ultraviolet and infrared absorbance, thereby converting absorbed light into heat without sacrificing transparency. A prototype that couples the film with thermoelectric power generation produces an extraordinary output voltage of ≈4 V within an area of 0.01 m2 exposed to sunshine. Further optimization design and experimental verification demonstrate high conversion efficiency comparable to state-of-the-art transparent photovoltaics, enriching the library of on-site energy-saving and transparent power generation.

Loading...
Thumbnail Image
Item

Switchable Cavitation in Silicone Coatings for Energy-Saving Cooling and Heating

2020, Zhao, H., Sun, Q., Zhou, J., Deng, X., Cui, J.

Space cooling and heating currently result in huge amounts of energy consumption and various environmental problems. Herein, a switching strategy is described for efficient energy-saving cooling and heating based on the dynamic cavitation of silicone coatings that can be reversibly and continuously tuned from a highly porous state to a transparent solid. In the porous state, the coatings can achieve efficient solar reflection (93%) and long-wave infrared emission (94%) to induce a subambient temperature drop of about 5 °C in hot weather (≈35 °C). In the transparent solid state, the coatings allow active sunlight permeation (95%) to induce solar heating to raise the ambient temperature from 10 to 28 °C in cold weather. The coatings are made from commercially available, cheap materials via a facile, environmentally friendly method, and are durable, reversible, and patternable. They can be applied immediately to various existed objects including rigid substrates.