Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor

2015, Guha, S., Warsinke, A., Tientcheu, Ch.M., Schmalz, K., Meliani, C., Wenger, Ch.

In this work we present a CMOS high frequency direct immunosensor operating at 6 GHz (C-band) for label free determination of creatinine. The sensor is fabricated in standard 0.13 μm SiGe:C BiCMOS process. The report also demonstrates the ability to immobilize creatinine molecules on a Si3N4 passivation layer of the standard BiCMOS/CMOS process, therefore, evading any further need of cumbersome post processing of the fabricated sensor chip. The sensor is based on capacitive detection of the amount of non-creatinine bound antibodies binding to an immobilized creatinine layer on the passivated sensor. The chip bound antibody amount in turn corresponds indirectly to the creatinine concentration used in the incubation phase. The determination of creatinine in the concentration range of 0.88–880 μM is successfully demonstrated in this work. A sensitivity of 35 MHz/10 fold increase in creatinine concentration (during incubation) at the centre frequency of 6 GHz is gained by the immunosensor. The results are compared with a standard optical measurement technique and the dynamic range and sensitivity is of the order of the established optical indication technique. The C-band immunosensor chip comprising an area of 0.3 mm2 reduces the sensing area considerably, therefore, requiring a sample volume as low as 2 μl. The small analyte sample volume and label free approach also reduce the experimental costs in addition to the low fabrication costs offered by the batch fabrication technique of CMOS/BiCMOS process.

Loading...
Thumbnail Image
Item

Magnetofluidic platform for multidimensional magnetic and optical barcoding of droplets

2014, Lin, Gungun, Makarov, Denys, Medina-Sánchez, Mariana, Guix, Maria, Baraban, Larysa, Cuniberti, Gianaurelio, Schmidt, Oliver G.

We present a concept of multidimensional magnetic and optical barcoding of droplets based on a magnetofluidic platform. The platform comprises multiple functional areas, such as an encoding area, an encoded droplet pool and a magnetic decoding area with integrated giant magnetoresistive (GMR) sensors. To prove this concept, penicillin functionalized with fluorescent dyes is coencapsulated with magnetic nanoparticles into droplets. While fluorescent dyes are used as conventional optical barcodes which are decoded with an optical decoding setup, an additional dimensionality of barcodes is created by using magnetic nanoparticles as magnetic barcodes for individual droplets and integrated micro-patterned GMR sensors as the corresponding magnetic decoding devices. The strategy of incorporating a magnetic encoding scheme provides a dynamic range of ~40 dB in addition to that of the optical method. When combined with magnetic barcodes, the encoding capacity can be increased by more than 1 order of magnitude compared with using only optical barcodes, that is, the magnetic platform provides more than 10 unique magnetic codes in addition to each optical barcode. Besides being a unique magnetic functional element for droplet microfluidics, the platform is capable of on-demand facile magnetic encoding and real-time decoding of droplets which paves the way for the development of novel non-optical encoding schemes for highly multiplexed droplet-based biological assays.

Loading...
Thumbnail Image
Item

Trapping self-propelled micromotors with microfabricated chevron and heart-shaped chips

2014, Restrepo-Pérez, Laura, Soler, Lluís, Martínez-Cisneros, Cynthia S., Sanchez, Samuel, Schmidt, Oliver G.

We demonstrate that catalytic micromotors can be trapped in microfluidic chips containing chevron and heart-shaped structures. Despite the challenge presented by the reduced size of the traps, microfluidic chips with different trapping geometries can be fabricated via replica moulding. We prove that these microfluidic chips can capture micromotors without the need for any external mechanism to control their motion.

Loading...
Thumbnail Image
Item

Volume fraction determination of binary liquid mixtures by measurement of the equalization wavelength

2010, Martincek, I., Pudis, D., Kacik, D., Schuster, K.

A method for determination of the volume fraction in binary liquid mixtures by measurement of the equalization wavelength of intermodal interference of modes LP01 and LP11 in a liquid core optical fiber is presented in this paper. This method was studied using a liquid core optical fiber with fused silica cladding and a core made up of a binary silicon oil/chloroform liquid mixture with different volume fractions of chloroform. The interference technique used allows us to determine the chloroform volume fraction in the binary mixture with accuracy better than 0.1%. One of the most attractive advantages of presented method is very small volume of investigated mixture needed, as only a few hundred picoliters are necessary for reliable results. © 2010 by the authors.

Loading...
Thumbnail Image
Item

Self-calibrating highly sensitive dynamic capacitance sensor: Towards rapid sensing and counting of particles in laminar flow systems

2015, Guha, S., Schmalz, K., Wenger, Ch., Herzel, F.

In this report we propose a sensor architecture and a corresponding read-out technique on silicon for the detection of dynamic capacitance change. This approach can be applied to rapid particle counting and single particle sensing in a fluidic system. The sensing principle is based on capacitance variation of an interdigitated electrode (IDE) structure embedded in an oscillator circuit. The capacitance scaling of the IDE results in frequency modulation of the oscillator. A demodulator architecture is employed to provide a read-out of the frequency modulation caused by the capacitance change. A self-calibrating technique is employed at the read-out amplifier stage. The capacitance variation of the IDE due to particle flow causing frequency modulation and the corresponding demodulator read-out has been analytically modelled. Experimental verification of the established model and the functionality of the sensor chip were shown using a modulating capacitor independent of fluidic integration. The initial results show that the sensor is capable of detecting frequency changes of the order of 100 parts per million (PPM), which translates to a shift of 1.43 MHz at 14.3 GHz operating frequency. It is also shown that a capacitance change every 3 μs can be accurately detected.

Loading...
Thumbnail Image
Item

An 8-fold parallel reactor system for combinatorial catalysis research

2006, Stoll, N., Allwardt, A., Dingerdissen, U., Thurow, K.

Increasing economic globalization and mounting time and cost pressure on the development of new raw materials for the chemical industry as well as materials and environmental engineering constantly raise the demands on technologies to be used. Parallelization, miniaturization, and automation are the main concepts involved in increasing the rate of chemical and biological experimentation. Copyright © 2006 Norbert Stoll et al.

Loading...
Thumbnail Image
Item

A graphene-based hot electron transistor

2013, Vaziri, S., Lupina, G., Henkel, C., Smith, A.D., Östling, M., Dabrowski, J., Lippert, G., Mehr, W., Lemme, M.C.

We experimentally demonstrate DC functionality of graphene-based hot electron transistors, which we call graphene base transistors (GBT). The fabrication scheme is potentially compatible with silicon technology and can be carried out at the wafer scale with standard silicon technology. The state of the GBTs can be switched by a potential applied to the transistor base, which is made of graphene. Transfer characteristics of the GBTs show ON/OFF current ratios exceeding 104.

Loading...
Thumbnail Image
Item

Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications

2014, Martinez-Cisneros, C.S., Sanchez, S., Xi, W., Schmidt, O.G.

We present ultracompact three-dimensional tubular structures integrating Au-based electrodes as impedimetric microsensors for the in-flow determination of mono- and divalent ionic species and HeLa cells. The microsensors show an improved performance of 2 orders of magnitude (limit of detection = 0.1 nM for KCl) compared to conventional planar conductivity detection systems integrated in microfluidic platforms and the capability to detect single HeLa cells in flowing phosphate buffered saline. These highly integrated conductivity tubular sensors thus open new possibilities for lab-in-a-tube devices for bioapplications such as biosensing and bioelectronics.

Loading...
Thumbnail Image
Item

Digital IIR filters design using differential evolution algorithm with a controllable probabilistic population size

2012, Zhu, W., Fang, J.-A., Tang, Y., Zhang, W., Du, W.

Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive.

Loading...
Thumbnail Image
Item

Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films

2015, Srivastava, Sachin K., Hamo, Hilla Ben, Kushmaro, Ariel, Marks, Robert S., Grüner, Christoph, Rauschenbach, Bernd, Abdulhalim, Ibrahim

A nanobiosensor chip, utilizing surface enhanced Raman spectroscopy (SERS) on nanosculptured thin films (nSTFs) of silver, was shown to detect Escherichia coli (E. coli) bacteria down to the concentration level of a single bacterium. The sensor utilizes highly enhanced plasmonic nSTFs of silver on a silicon platform for the enhancement of Raman bands as checked with adsorbed 4-aminothiophenol molecules. T-4 bacteriophages were immobilized on the aforementioned surface of the chip for the specific capture of target E. coli bacteria. To demonstrate that no significant non-specific immobilization of other bacteria occurs, three different, additional bacterial strains, Chromobacterium violaceum, Paracoccus denitrificans and Pseudomonas aeruginosa were used. Furthermore, experiments performed on an additional strain of E. coli to address the specificity and reusability of the sensor showed that the sensor operates for different strains of E. coli and is reusable. Time resolved phase contrast microscopy of the E. coli-T4 bacteriophage chip was performed to study its interaction with bacteria over time. Results showed that the present sensor performs a fast, accurate and stable detection of E. coli with ultra-small concentrations of bacteria down to the level of a single bacterium in 10 μl volume of the sample.