Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator

2016, Bravo-Aranda, Juan Antonio, Belegante, Livio, Freudenthaler, Volker, Alados-Arboledas, Lucas, Nicolae, Doina, Granados-Muñoz, María José, Guerrero-Rascado, Juan Luis, Amodeo, Aldo, D'Amico, Giusseppe, Engelmann, Ronny, Pappalardo, Gelsomina, Kokkalis, Panos, Mamouri, Rodanthy, Papayannis, Alex, Navas-Guzmán, Francisco, Olmo, Francisco José, Wandinger, Ulla, Amato, Francesco, Haeffelin, Martial

Lidar depolarization measurements distinguish between spherical and non-spherical aerosol particles based on the change of the polarization state between the emitted and received signal. The particle shape information in combination with other aerosol optical properties allows the characterization of different aerosol types and the retrieval of aerosol particle microphysical properties. Regarding the microphysical inversions, the lidar depolarization technique is becoming a key method since particle shape information can be used by algorithms based on spheres and spheroids, optimizing the retrieval procedure. Thus, the identification of the depolarization error sources and the quantification of their effects are crucial. This work presents a new tool to assess the systematic error of the volume linear depolarization ratio (δ), combining the Stokes–Müller formalism and the complete sampling of the error space using the lidar model presented in Freudenthaler (2016a). This tool is applied to a synthetic lidar system and to several EARLINET lidars with depolarization capabilities at 355 or 532 nm. The lidar systems show relative errors of δ larger than 100 % for δ values around molecular linear depolarization ratios (∼ 0.004 and up to ∼  10 % for δ = 0.45). However, one system shows only relative errors of 25 and 0.22 % for δ = 0.004 and δ = 0.45, respectively, and gives an example of how a proper identification and reduction of the main error sources can drastically reduce the systematic errors of δ. In this regard, we provide some indications of how to reduce the systematic errors.

Loading...
Thumbnail Image
Item

Correcting a fundamental error in greenhouse gas accounting related to bioenergy

2012, Haberl, H., Sprinz, D., Bonazountas, M., Cocco, P., Desaubies, Y., Henze, M., Hertel, O., Johnson, R.K., Kastrup, U., Laconte, P., Lange, E., Novak, P., Paavola, J., Reenberg, A., van den Hove, S., Vermeire, T., Wadhams, P., Searchinger, T.

Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of 'additional biomass' - biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy - can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy.