Search Results

Now showing 1 - 8 of 8
  • Item
    Estimating the near-surface permafrost-carbon feedback on global warming
    (München : European Geopyhsical Union, 2012) Schneider von Deimling, T.; Meinshausen, M.; Levermann, A.; Huber, V.; Frieler, K.; Lawrence, D.M.; Brovkin, V.
    Thawing of permafrost and the associated release of carbon constitutes a positive feedback in the climate system, elevating the effect of anthropogenic GHG emissions on global-mean temperatures. Multiple factors have hindered the quantification of this feedback, which was not included in climate carbon-cycle models which participated in recent model intercomparisons (such as the Coupled Carbon Cycle Climate Model Intercomparison Project – C4MIP) . There are considerable uncertainties in the rate and extent of permafrost thaw, the hydrological and vegetation response to permafrost thaw, the decomposition timescales of freshly thawed organic material, the proportion of soil carbon that might be emitted as carbon dioxide via aerobic decomposition or as methane via anaerobic decomposition, and in the magnitude of the high latitude amplification of global warming that will drive permafrost degradation. Additionally, there are extensive and poorly characterized regional heterogeneities in soil properties, carbon content, and hydrology. Here, we couple a new permafrost module to a reduced complexity carbon-cycle climate model, which allows us to perform a large ensemble of simulations. The ensemble is designed to span the uncertainties listed above and thereby the results provide an estimate of the potential strength of the feedback from newly thawed permafrost carbon. For the high CO2 concentration scenario (RCP8.5), 33–114 GtC (giga tons of Carbon) are released by 2100 (68 % uncertainty range). This leads to an additional warming of 0.04–0.23 °C. Though projected 21st century permafrost carbon emissions are relatively modest, ongoing permafrost thaw and slow but steady soil carbon decomposition means that, by 2300, about half of the potentially vulnerable permafrost carbon stock in the upper 3 m of soil layer (600–1000 GtC) could be released as CO2, with an extra 1–4 % being released as methane. Our results also suggest that mitigation action in line with the lower scenario RCP3-PD could contain Arctic temperature increase sufficiently that thawing of the permafrost area is limited to 9–23 % and the permafrost-carbon induced temperature increase does not exceed 0.04–0.16 °C by 2300.
  • Item
    About the influence of elevation model quality and small-scale damage functions on flood damage estimation
    (Göttingen : Copernicus GmbH, 2011) Boettle, M.; Kropp, J.P.; Reiber, L.; Roithmeier, O.; Rybski, D.; Walther, C.
    The assessment of coastal flood risks in a particular region requires the estimation of typical damages caused by storm surges of certain characteristics and annualities. Although the damage depends on a multitude of factors, including flow velocity, duration of flood, precaution, etc., the relationship between flood events and the corresponding average damages is usually described by a stage-damage function, which considers the maximum water level as the only damage influencing factor. Starting with different (microscale) building damage functions we elaborate a macroscopic damage function for the entire case study area Kalundborg (Denmark) on the basis of multiple coarse-graining methods and assumptions of the hydrological connectivity. We find that for small events, the macroscopic damage function mostly depends on the properties of the elevation model, while for large events it strongly depends on the assumed building damage function. In general, the damage in the case study increases exponentially up to a certain level and then less steep.
  • Item
    Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
    (Munich : EGU, 2021) Stenzel, Fabian; Gerten, Dieter; Hanasaki, Naota
    Many scenarios of future climate evolution and its anthropogenic drivers include considerable amounts of bioenergy as a fuel source, as a negative emission technology, and for providing electricity. The associated freshwater abstractions for irrigation of dedicated biomass plantations might be substantial and therefore potentially increase water limitation and stress in affected regions; however, assumptions and quantities of water use provided in the literature vary strongly. This paper reviews existing global assessments of freshwater abstractions for bioenergy production and puts these estimates into the context of scenarios of other water-use sectors. We scanned the available literature and (out of 430 initial hits) found 16 publications (some of which include several bioenergy-water-use scenarios) with reported values on global irrigation water abstractions for biomass plantations, suggesting water withdrawals in the range of 128.4 to 9000 km3 yr−1, which would come on top of (or compete with) agricultural, industrial, and domestic water withdrawals. To provide an understanding of the origins of this large range, we present the diverse underlying assumptions, discuss major study differences, and calculate an inverse water-use efficiency (iwue), which facilitates comparison of the required freshwater amounts per produced biomass harvest. We conclude that due to the potentially high water demands and the tradeoffs that might go along with them, bioenergy should be an integral part of global assessments of freshwater demand and use. For interpreting and comparing reported estimates of possible future bioenergy water abstractions, full disclosure of parameters and assumptions is crucial. A minimum set should include the complete water balances of bioenergy production systems (including partitioning of blue and green water), bioenergy crop species and associated water-use efficiencies, rainfed and irrigated bioenergy plantation locations (including total area and meteorological conditions), and total biomass harvest amounts. In the future, a model intercomparison project with standardized parameters and scenarios would be helpful.
  • Item
    Water savings potentials of irrigation systems: Global simulation of processes and linkages
    (Göttingen : Copernicus GmbH, 2015) Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.
  • Item
    The energy and carbon inequality corridor for a 1.5 °C compatible and just Europe
    (Bristol : IOP Publ., 2021-6-15) Jaccard, Ingram S; Pichler, Peter-Paul; Többen, Johannes; Weisz, Helga
    The call for a decent life for all within planetary limits poses a dual challenge: provide all people with the essential resources needed to live well and, collectively, not exceed the source and sink capacity of the biosphere to sustain human societies. We examine the corridor of possible distributions of household energy and carbon footprints that satisfy both minimum energy use for a decent life and available energy supply compatible with the 1.5 °C target in 2050. We estimated household energy and carbon footprints for expenditure deciles for 28 European countries in 2015 by combining data from national household budget surveys with the environmentally-extended multi-regional input–output model EXIOBASE. We found a top-to-bottom decile ratio (90:10) of 7.2 for expenditure, 3.1 for net energy and 2.6 for carbon. The lower inequality of energy and carbon footprints is largely attributable to inefficient energy and heating technologies in the lower deciles (mostly Eastern Europe). Adopting best technology across Europe would save 11 EJ of net energy annually, but increase environmental footprint inequality. With such inequality, both targets can only be met through the use of CCS, large efficiency improvements, and an extremely low minimum final energy use of 28 GJ per adult equivalent. Assuming a more realistic minimum energy use of about 55 GJ ae−1 and no CCS deployment, the 1.5 °C target can only be achieved at near full equality. We conclude that achieving both stated goals is an immense and widely underestimated challenge, the successful management of which requires far greater room for maneuver in monetary and fiscal terms than is reflected in the current European political discourse.
  • Item
    N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios
    (München : European Geopyhsical Union, 2012) Bodirsky, B.L.; Popp, A.; Weindl, I.; Dietrich, J.P.; Rolinski, S.; Scheiffele, L.; Schmitz, C.; Lotze-Campen, H.
    Reactive nitrogen (Nr) is not only an important nutrient for plant growth, thereby safeguarding human alimentation, but it also heavily disturbs natural systems. To mitigate air, land, aquatic, and atmospheric pollution caused by the excessive availability of Nr, it is crucial to understand the long-term development of the global agricultural Nr cycle. For our analysis, we combine a material flow model with a land-use optimization model. In a first step we estimate the state of the Nr cycle in 1995. In a second step we create four scenarios for the 21st century in line with the SRES storylines. Our results indicate that in 1995 only half of the Nr applied to croplands was incorporated into plant biomass. Moreover, less than 10 per cent of all Nr in cropland plant biomass and grazed pasture was consumed by humans. In our scenarios a strong surge of the Nr cycle occurs in the first half of the 21st century, even in the environmentally oriented scenarios. Nitrous oxide (N2O) emissions rise from 3 Tg N2O-N in 1995 to 7–9 in 2045 and 5–12 Tg in 2095. Reinforced Nr pollution mitigation efforts are therefore required.
  • Item
    Estimation of sedimentary proxy records together with associated uncertainty
    (Göttingen : Copernicus GmbH, 2015) Goswami, B.; Heitzig, J.; Rehfeld, K.; Marwan, N.; Anoop, A.; Prasad, S.; Kurths, J.
  • Item
    Multi-scale event synchronization analysis for unravelling climate processes: A wavelet-based approach
    (Göttingen : Copernicus GmbH, 2017) Agarwal, A.; Marwan, N.; Rathinasamy, M.; Merz, B.; Kurths, J.
    The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-)processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales.