Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Membrane Tension Orchestrates Rear Retraction in Matrix-Directed Cell Migration

2019, Hetmanski, J.H.R., de, Belly, H., Busnelli, I., Waring, T., Nair, R.V., Sokleva, V., Dobre, O., Cameron, A., Gauthier, N., Lamaze, C., Swift, J., del, Campo, A., Starborg, T., Zech, T., Goetz, J.G., Paluch, E.K., Schwartz, J.-M., Caswell, P.T.

In development, wound healing, and cancer metastasis, vertebrate cells move through 3D interstitial matrix, responding to chemical and physical guidance cues. Protrusion at the cell front has been extensively studied, but the retraction phase of the migration cycle is not well understood. Here, we show that fast-moving cells guided by matrix cues establish positive feedback control of rear retraction by sensing membrane tension. We reveal a mechanism of rear retraction in 3D matrix and durotaxis controlled by caveolae, which form in response to low membrane tension at the cell rear. Caveolae activate RhoA-ROCK1/PKN2 signaling via the RhoA guanidine nucleotide exchange factor (GEF) Ect2 to control local F-actin organization and contractility in this subcellular region and promote translocation of the cell rear. A positive feedback loop between cytoskeletal signaling and membrane tension leads to rapid retraction to complete the migration cycle in fast-moving cells, providing directional memory to drive persistent cell migration in complex matrices. © 2019 The AuthorsCell migration through 3D matrix is critical to developmental and disease processes, but the mechanisms that control rear retraction are poorly understood. Hetmanski et al. show that differential membrane tension allows caveolae to form at the rear of migrating cells and activate the contractile actin cytoskeleton to promote rapid retraction. © 2019 The Authors

Loading...
Thumbnail Image
Item

Geometry-Driven Cell Organization Determines Tissue Growths in Scaffold Pores: Consequences for Fibronectin Organization

2013, Joly, P., Duda, G.N., Schöne, M., Welzel, P.B., Freudenberg, U., Werner, C., Petersen, A.

To heal tissue defects, cells have to bridge gaps and generate new extracellular matrix (ECM). Macroporous scaffolds are frequently used to support the process of defect filling and thus foster tissue regeneration. Such biomaterials contain micro-voids (pores) that the cells fill with their own ECM over time. There is only limited knowledge on how pore geometry influences cell organization and matrix production, even though it is highly relevant for scaffold design. This study hypothesized that 1) a simple geometric description predicts cellular organization during pore filling at the cell level and that 2) pore closure results in a reorganization of ECM. Scaffolds with a broad distribution of pore sizes (macroporous starPEG-heparin cryogel) were used as a model system and seeded with primary fibroblasts. The strategies of cells to fill pores could be explained by a simple geometrical model considering cells as tensioned chords. The model matched qualitatively as well as quantitatively by means of cell number vs. open cross-sectional area for all pore sizes. The correlation between ECM location and cell position was higher when the pores were not filled with tissue (Pearson's coefficient ρ = 0.45±0.01) and reduced once the pores were closed (ρ = 0.26±0.04) indicating a reorganization of the cell/ECM network. Scaffold pore size directed the time required for pore closure and furthermore impacted the organization of the fibronectin matrix. Understanding how cells fill micro-voids will help to design biomaterial scaffolds that support the endogenous healing process and thus allow a fast filling of tissue defects.

Loading...
Thumbnail Image
Item

Vitronectin-based hydrogels recapitulate neuroblastoma growth conditions

2022, Monferrer, Ezequiel, Dobre, Oana, Trujillo, Sara, González Oliva, Mariana Azevedo, Trubert-Paneli, Alexandre, Acevedo-León, Delia, Noguera, Rosa, Salmeron-Sanchez, Manuel

The tumor microenvironment plays an important role in cancer development and the use of 3D in vitro systems that decouple different elements of this microenvironment is critical for the study of cancer progression. In neuroblastoma (NB), vitronectin (VN), an extracellular matrix protein, has been linked to poor prognosis and appears as a promising therapeutic target. Here, we developed hydrogels that incorporate VN into 3D polyethylene glycol (PEG) hydrogel networks to recapitulate the native NB microenvironment. The stiffness of the VN/PEG hydrogels was modulated to be comparable to the in vivo values reported for NB tissue samples. We used SK-N-BE (2) NB cells to demonstrate that PEGylated VN promotes cell adhesion as the native protein does. Furthermore, the PEGylation of VN allows its crosslinking into the hydrogel network, providing VN retention within the hydrogels that support viable cells in 3D. Confocal imaging and ELISA assays indicate that cells secrete VN also in the hydrogels and continue to reorganize their 3D environment. Overall, the 3D VN-based PEG hydrogels recapitulate the complexity of the native tumor extracellular matrix, showing that VN-cell interaction plays a key role in NB aggressiveness, and that VN could potentially be targeted in preclinical drug studies performed on the presented hydrogels.

Loading...
Thumbnail Image
Item

Mechanobiology of Epithelia From the Perspective of Extracellular Matrix Heterogeneity

2020, Kozyrina, Aleksandra N., Piskova, Teodora, Di Russo, Jacopo

Understanding the complexity of the extracellular matrix (ECM) and its variability is a necessary step on the way to engineering functional (bio)materials that serve their respective purposes while relying on cell adhesion. Upon adhesion, cells receive messages which contain both biochemical and mechanical information. The main focus of mechanobiology lies in investigating the role of this mechanical coordination in regulating cellular behavior. In recent years, this focus has been additionally shifted toward cell collectives and the understanding of their behavior as a whole mechanical continuum. Collective cell phenomena very much apply to epithelia which are either simple cell-sheets or more complex three-dimensional structures. Researchers have been mostly using the organization of monolayers to observe their collective behavior in well-defined experimental setups in vitro. Nevertheless, recent studies have also reported the impact of ECM remodeling on epithelial morphogenesis in vivo. These new concepts, combined with the knowledge of ECM biochemical complexity are of key importance for engineering new interactive materials to support both epithelial remodeling and homeostasis. In this review, we summarize the structure and heterogeneity of the ECM before discussing its impact on the epithelial mechanobiology. © Copyright © 2020 Kozyrina, Piskova and Di Russo.

Loading...
Thumbnail Image
Item

Integrating Biophysics in Toxicology

2020, Del Favero, G., Kraegeloh, A.

Integration of biophysical stimulation in test systems is established in diverse branches of biomedical sciences including toxicology. This is largely motivated by the need to create novel experimental setups capable of reproducing more closely in vivo physiological conditions. Indeed, we face the need to increase predictive power and experimental output, albeit reducing the use of animals in toxicity testing. In vivo, mechanical stimulation is essential for cellular homeostasis. In vitro, diverse strategies can be used to model this crucial component. The compliance of the extracellular matrix can be tuned by modifying the stiffness or through the deformation of substrates hosting the cells via static or dynamic strain. Moreover, cells can be cultivated under shear stress deriving from the movement of the extracellular fluids. In turn, introduction of physical cues in the cell culture environment modulates differentiation, functional properties, and metabolic competence, thus influencing cellular capability to cope with toxic insults. This review summarizes the state of the art of integration of biophysical stimuli in model systems for toxicity testing, discusses future challenges, and provides perspectives for the further advancement of in vitro cytotoxicity studies.

Loading...
Thumbnail Image
Item

Guidance of mesenchymal stem cells on fibronectin structured hydrogel films

2014, Kasten, Annika, Naser, Tamara, Brüllhoff, Kristina, Fiedler, Jörg, Müller, Petra, Möller, Martin, Rychly, Joachim, Groll, Jürgen, Brenner, Rolf E., Engler, Adam J.

Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN) that was homogeneously immmobilized to NCO-sP(EO-stat-PO), which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC) revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.

Loading...
Thumbnail Image
Item

Multifunctional coatings combining bioactive peptides and affinity-based cytokine delivery for enhanced integration of degradable vascular grafts

2020, Clauder, Franziska, Zitzmann, Franziska D., Friebe, Sabrina, Mayr, Stefan G., Robitzki, Andrea A., Beck-Sickinger, Annette G.

Insufficient endothelialization of cardiovascular devices is a high-risk factor for implant failure. Presentation of extracellular matrix (ECM)-derived coatings is a well-known strategy to improve implant integration. However, the complexity of the system is challenging and strategies for applying multifunctionality are required. Here, we engineered mussel-derived surface-binding peptides equipped with integrin (c[RGDfK]) and proteoglycan binding sites (FHRRIKA) for enhanced endothelialization. Surface-binding properties of the platform containing l-3,4-dihydroxyphenylalanine (DOPA) residues were confirmed for hydrophilized polycaprolactone-co-lactide scaffolds as well as for glass and polystyrene. Further, heparin and the heparin-binding angiogenic factors VEGF, FGF-2 and CXCL12 were immobilized onto the peptide in a modular assembly. Presentation of bioactive peptides greatly enhanced human umbilical vein endothelial cell (HUVEC) adhesion and survival under static and fluidic conditions. In subsequent investigations, peptide-heparin-complexes loaded with CXCL12 or VEGF had an additional increasing effect on cell viability, differentiation and migration. Finally, hemocompatibility of the coatings was ensured. This study demonstrates that coatings combining adhesion peptides, glycosaminoglycans and modulators are a versatile tool to convey ECM-inspired multifunctionality to biomaterials and efficiently promote their integration. © 2020 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

In vitro model of metastasis to bone marrow mediates prostate cancer castration resistant growth through paracrine and extracellular matrix factors

2012, Lescarbeau, R.M., Seib, F.P., Prewitz, M., Werner, C., Kaplan, D.L.

The spread of prostate cancer cells to the bone marrow microenvironment and castration resistant growth are key steps in disease progression and significant sources of morbidity. However, the biological significance of mesenchymal stem cells (MSCs) and bone marrow derived extracellular matrix (BM-ECM) in this process is not fully understood. We therefore established an in vitro engineered bone marrow tissue model that incorporates hMSCs and BM-ECM to facilitate mechanistic studies of prostate cancer cell survival in androgen-depleted media in response to paracrine factors and BM-ECM. hMSC-derived paracrine factors increased LNCaP cell survival, which was in part attributed to IGFR and IL6 signaling. In addition, BM-ECM increased LNCaP and MDA-PCa-2b cell survival in androgen-depleted conditions, and induced chemoresistance and morphological changes in LNCaPs. To determine the effect of BM-ECM on cell signaling, the phosphorylation status of 46 kinases was examined. Increases in the phosphorylation of MAPK pathway-related proteins as well as sustained Akt phosphorylation were observed in BM-ECM cultures when compared to cultures grown on plasma-treated polystyrene. Blocking MEK1/2 or the PI3K pathway led to a significant reduction in LNCaP survival when cultured on BM-ECM in androgen-depleted conditions. The clinical relevance of these observations was determined by analyzing Erk phosphorylation in human bone metastatic prostate cancer versus non-metastatic prostate cancer, and increased phosphorylation was seen in the metastatic samples. Here we describe an engineered bone marrow model that mimics many features observed in patients and provides a platform for mechanistic in vitro studies.

Loading...
Thumbnail Image
Item

Polymer Hydrogels to Guide Organotypic and Organoid Cultures

2020, Magno, Valentina, Meinhardt, Andrea, Werner, Carsten

Human organotypic and organoid cultures provide increasingly life-like models of tissue/organ development and disease, enable more realistic drug screening, and may ultimately pave the way for new therapies. A broad variety of extracellular matrix-based or inspired materials is instrumental in these approaches. In this review article, the foundations of the related materials design are summarized with an emphasis on the advantages and limitations of decellularized and reconstituted biopolymeric matrices as well as biohybrid and fully synthetic polymer hydrogel systems applied to enable specific organotypic and organoid cultures. Recent progress in the fabrication of defined hydrogel systems offering thoroughly tunable biochemical and biophysical properties is highlighted. Potentialities of hydrogel-based approaches to address the persisting challenges of organoid technologies, namely scalability, connectivity/integration, reproducibility, parallelization, and in situ monitoring are discussed. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Exogenous supply of Hsp47 triggers fibrillar collagen deposition in skin cell cultures in vitro

2020, Khan, E.S., Sankaran, S., Llontop, L., Del Campo, A.

Background: Collagen is a structural protein that provides mechanical stability and defined architectures to skin. In collagen-based skin disorders this stability is lost, either due to mutations in collagens or in the chaperones involved in collagen assembly. This leads to chronic wounds, skin fragility, and blistering. Existing approaches to treat such conditions rely on administration of small molecules to simulate collagen production, like 4-phenylbutyrate (4-PBA) or growth factors like TGF-β. However, these molecules are not specific for collagen synthesis, and result in unsolicited side effects. Hsp47 is a collagen-specific chaperone with a major role in collagen biosynthesis. Expression levels of Hsp47 correlate with collagen deposition. This article explores the stimulation of collagen deposition by exogenously supplied Hsp47 (collagen specific chaperone) to skin cells, including specific collagen subtypes quantification. Results: Here we quantify the collagen deposition level and the types of deposited collagens after Hsp47 stimulation in different in vitro cultures of cells from human skin tissue (fibroblasts NHDF, keratinocytes HaCat and endothelial cells HDMEC) and mouse fibroblasts (L929 and MEF). We find upregulated deposition of fibrillar collagen subtypes I, III and V after Hsp47 delivery. Network collagen IV deposition was enhanced in HaCat and HDMECs, while fibril-associated collagen XII was not affected by the increased intracellular Hsp47 levels. The deposition levels of fibrillar collagen were cell-dependent i.e. Hsp47-stimulated fibroblasts deposited significantly higher amount of fibrillar collagen than Hsp47-stimulated HaCat and HDMECs. Conclusions: A 3-fold enhancement of collagen deposition was observed in fibroblasts upon repeated dosage of Hsp47 within the first 6 days of culture. Our results provide fundamental understanding towards the idea of using Hsp47 as therapeutic protein to treat collagen disorders.