Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading

2023, Pameté, Emmanuel, Köps, Lukas, Kreth, Fabian Alexander, Pohlmann, Sebastian, Varzi, Alberto, Brousse, Thierry, Balducci, Andrea, Presser, Volker

High-performance electrochemical applications have expedited the research in high-power devices. As such, supercapacitors, including electrical double-layer capacitors (EDLCs) and pseudocapacitors, have gained significant attention due to their high power density, long cycle life, and fast charging capabilities. Yet, no device lasts forever. It is essential to understand the mechanisms behind performance degradation and aging so that these bottlenecks can be addressed and tailored solutions can be developed. Herein, the factors contributing to the aging and degradation of supercapacitors, including electrode materials, electrolytes, and other aspects of the system, such as pore blocking, electrode compositions, functional groups, and corrosion of current collectors are examined. The monitoring and characterizing of the performance degradation of supercapacitors, including electrochemical methods, in situ, and ex situ techniques are explored. In addition, the degradation mechanisms of different types of electrolytes and electrode materials and the effects of aging from an industrial application standpoint are analyzed. Next, how electrode degradations and electrolyte decompositions can lead to failure, and pore blocking, electrode composition, and other factors that affect the device's lifespan are examined. Finally, the future directions and challenges for reducing supercapacitors' performance degradation, including developing new materials and methods for characterizing and monitoring the devices are summarized.

Loading...
Thumbnail Image
Item

Pre and post-treatments to improve weldability and mechanical properties of aluminum-polyamide laser welded specimens

2020, Elahi, Mahdi Amne, Koch, Marcus, Heck, Mike, Plapper, Peter

The laser polishing surface treatment is a prerequisite for enhanced weldability that is enabled by superior adhesion between the weldments. The paper describes the laser polishing process of the aluminum surface to develop a relatively thick and porous artificial aluminum oxide layer. Microscopic observation shows the laser polishing process significantly improves the adhesion of molten polyamide to the aluminum surface. Besides, the shear load of the pretreated joints is much higher than that of as-received ones. However, for the majority of the welded samples, the failure happens at the polyamide near the interface of aluminum/polyamide due to the thermal effect and structural changes of polyamide during the welding process. By applying the post-treatment of the welded specimens with different cycles, the mentioned failure mechanism is not observed anymore. Therefore, the mechanical properties of the joint will be improved and reach to the limits of the base materials.