Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Strong and ductile high temperature soft magnets through Widmanstätten precipitates

2023, Han, Liuliu, Maccari, Fernando, Soldatov, Ivan, Peter, Nicolas J., Souza Filho, Isnaldi R., Schäfer, Rudolf, Gutfleisch, Oliver, Li, Zhiming, Raabe, Dierk

Fast growth of sustainable energy production requires massive electrification of transport, industry and households, with electrical motors as key components. These need soft magnets with high saturation magnetization, mechanical strength, and thermal stability to operate efficiently and safely. Reconciling these properties in one material is challenging because thermally-stable microstructures for strength increase conflict with magnetic performance. Here, we present a material concept that combines thermal stability, soft magnetic response, and high mechanical strength. The strong and ductile soft ferromagnet is realized as a multicomponent alloy in which precipitates with a large aspect ratio form a Widmanstätten pattern. The material shows excellent magnetic and mechanical properties at high temperatures while the reference alloy with identical composition devoid of precipitates significantly loses its magnetization and strength at identical temperatures. The work provides a new avenue to develop soft magnets for high-temperature applications, enabling efficient use of sustainable electrical energy under harsh operating conditions.

Loading...
Thumbnail Image
Item

Two types of magnetic shape-memory effects from twinned microstructure and magneto-structural coupling in Fe1 +yTe

2019, Rößler, S., Koz, C., Wang, Z., Skourski, Y., Doerr, M., Kasinathan, D., Rosner, H., Schmidt, M., Schwarz, U., Rößler, U.K., Wirth, S.

A detailed experimental investigation of Fe1+yTe (y = 0.11, 0.12) using pulsed magnetic fields up to 60 T confirms remarkable magnetic shape-memory (MSM) effects. These effects result from magnetoelastic transformation processes in the low-temperature antiferromagnetic state of these materials. The observation of modulated and finely twinned microstructure at the nanoscale through scanning tunneling microscopy establishes a behavior similar to that of thermoelastic martensite. We identified the observed, elegant hierarchical twinning pattern of monoclinic crystallographic domains as an ideal realization of crossing twin bands. The antiferromagnetism of the monoclinic ground state allows for a magnetic-field–induced reorientation of these twin variants by the motion of one type of twin boundaries. At sufficiently high magnetic fields, we observed a second isothermal transformation process with large hysteresis for different directions of applied field. This gives rise to a second MSM effect caused by a phase transition back to the field-polarized tetragonal lattice state.