Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

High-energy few-cycle pulses: post-compression techniques

2021, Nagy, Tamas, Simon, Peter, Veisz, Laszlo

Contemporary ultrafast science requires reliable sources of high-energy few-cycle light pulses. Currently two methods are capable of generating such pulses: post compression of short laser pulses and optical parametric chirped-pulse amplification (OPCPA). Here we give a comprehensive overview on the post-compression technology based on optical Kerr-effect or ionization, with particular emphasis on energy and power scaling. Relevant types of post compression techniques are discussed including free propagation in bulk materials, multiple-plate continuum generation, multi-pass cells, filaments, photonic-crystal fibers, hollow-core fibers and self-compression techniques. We provide a short theoretical overview of the physics as well as an in-depth description of existing experimental realizations of post compression, especially those that can provide few-cycle pulse duration with mJ-scale pulse energy. The achieved experimental performances of these methods are compared in terms of important figures of merit such as pulse energy, pulse duration, peak power and average power. We give some perspectives at the end to emphasize the expected future trends of this technology. © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Loading...
Thumbnail Image
Item

A model equation for ultrashort optical pulses

2008, Amiranashvili, Shalva, Vladimirov, Andrei, Bandelow, Uwe

The nonlinear Schrödinger equation based on the Taylor approximation of the material dispersion can become invalid for ultrashort and few-cycle optical pulses. Instead, we use a rational fit to the dispersion function such that the resonances are naturally accounted for. This approach allows us to derive a simple non-envelope model for short pulses propagating in one spatial dimension. This model is further investigated numerically and analytically.

Loading...
Thumbnail Image
Item

Phase- and intensity-resolved measurements of above threshold ionization by few-cycle pulses

2018-06-11, Kübel, M., Arbeiter, M., Burger, C., Kling, Nora G., Pischke, T., Moshammer, R., Fennel, T., Kling, M.F., Bergues, B.

We investigate the carrier-envelope phase (CEP) and intensity dependence of the longitudinal momentum distribution of photoelectrons resulting from above threshold ionization of argon by few-cycle laser pulses. The intensity of the pulses with a center wavelength of 750 nm is varied in a range between 0.7 × 1014 and . Our measurements reveal a prominent maximum in the CEP-dependent asymmetry at photoelectron energies of 2 U P (U P being the ponderomotive potential), that is persistent over the entire intensity range. Further local maxima are observed around 0.3 and 0.8 U P. The experimental results are in good agreement with theoretical results obtained by solving the three-dimensional time-dependent Schrödinger equation. We show that for few-cycle pulses, the amplitude of the CEP-dependent asymmetry provides a reliable measure for the peak intensity on target. Moreover, the measured asymmetry amplitude exhibits an intensity-dependent interference structure at low photoelectron energy, which could be used to benchmark model potentials for complex atoms.

Loading...
Thumbnail Image
Item

High power, high repetition rate laser-based sources for attosecond science

2022, Furch, F.J., Witting, T., Osolodkov, M., Schell, F., Schulz, C.P., Vrakking, M.J.

Within the last two decades attosecond science has been established as a novel research field providing insights into the ultrafast electron dynamics that follows a photoexcitation or photoionization process. Enabled by technological advances in ultrafast laser amplifiers, attosecond science has been in turn, a powerful engine driving the development of novel sources of intense ultrafast laser pulses. This article focuses on the development of high repetition rate laser-based sources delivering high energy pulses with a duration of only a few optical cycles, for applications in attosecond science. In particular, a high power, high repetition rate optical parametric chirped pulse amplification system is described, which was developed to drive an attosecond pump-probe beamline targeting photoionization experiments with electron-ion coincidence detection at high acquisition rates.