Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Photonic candle – focusing light using nano-bore optical fibers

2018, Schneidewind, Henrik, Zeisberger, Matthias, Plidschun, Malte, Weidlich, Stefan, Schmidt, Markus A.

Focusing light represents one of the fundamental optical functionalities that is used in a countless number of situations. Here we introduce the concept of nano-bore optical fiber mediated light focusing that allows to efficiently focus light at micrometer distance from the fiber end face. Since the focusing effect is provided by the fundamental fiber mode, device implementation is extremely straightforward since no post-processing or nano-structuring is necessary. Far-field measurements on implemented fibers, simulations, and a dual-Gaussian beam toy model confirm the validity of the concept. Due to its unique properties such as strong light localization, a close to 100% implementation success rate, extremely high reproducibility, and its compatibility with current fiber circuitry, the concept will find application in numerous areas that demand to focus at remote distances.

Loading...
Thumbnail Image
Item

Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers

2017, Zeisberger, Matthias, Schmidt, Markus A.

Due to their promising applications, hollow-core fibers, in particular, their anti-resonant versions, have recently attracted the attention of the photonics community. Here, we introduce a model that approximates, using the reflection of a wave on a single planar film, modal guidance in tube-type anti-resonant waveguides whose core diameters are large compared to the wavelength. The model yields analytic expressions for the real and imaginary parts of the complex effective index of the leaky modes supported, and is valid in all practically relevant situations, excellently matching all the important dispersion and loss parameters. Essential principles such as the fourth power dependence of the modal loss on the core radius at all wavelengths and the geometry-independent transition refractive index, below which modal discrimination favors the fundamental mode are discussed. As application examples, we use our model for understanding higher-order mode suppression in revolver-type fibers and for uncovering the tuning capabilities associated with nonlinear pulse propagation.