Search Results

Now showing 1 - 6 of 6
  • Item
    Multiscale coupling of one-dimensional vascular models and elastic tissues
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Heltai, Luca; Caiazzo, Alfonso; Müller, Lucas O.
    We present a computational multiscale model for the efficient simulation of vascularized tissues, composed of an elastic three-dimensional matrix and a vascular network. The effect of blood vessel pressure on the elastic tissue is surrogated via hyper-singular forcing terms in the elasticity equations, which depend on the fluid pressure. In turn, the blood flow in vessels is treated as a one-dimensional network. The pressure and velocity of the blood in the vessels are simulated using a high-order finite volume scheme, while the elasticity equations for the tissue are solved using a finite element method. This work addresses the feasibility and the potential of the proposed coupled multiscale model. In particular, we assess whether the multiscale model is able to reproduce the tissue response at the effective scale (of the order of millimeters) while modeling the vasculature at the microscale. We validate the multiscale method against a full scale (three-dimensional) model, where the fluid/tissue interface is fully discretized and treated as a Neumann boundary for the elasticity equation. Next, we present simulation results obtained with the proposed approach in a realistic scenario, demonstrating that the method can robustly and efficiently handle the one-way coupling between complex fluid microstructures and the elastic matrix.
  • Item
    Stable computing with an enhanced physics based scheme for the 3d Navier-Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Case, Michael; Ervin, V.J.; Linke, A.; Rebholz, L.G.; Wilson, N.E.
    We study extensions of an earlier developed energy and helicity preserving scheme for the 3D Navier-Stokes equations and apply them to a more general class of problems. The scheme is studied together with stabilizations of grad-div type in order to mitigate the effect of the Bernoulli pressure error on the velocity error. We prove stability, convergence, discuss conservation properties, and present numerical experiments that demonstrate the advantages of the scheme
  • Item
    A review of variational multiscale methods for the simulation of turbulent incompressible flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Ahmed, Naveed; Rebollo, Tomás Chacón; John, Volker; Rubino, Samuele
    Various realizations of variational multiscale (VMS) methods for simulating turbulent incompressible flows have been proposed in the past fifteen years. All of these realizations obey the basic principles of VMS methods: They are based on the variational formulation of the incompressible Navier-Stokes equations and the scale separation is defined by projections. However, apart from these common basic features, the various VMS methods look quite different. In this review, the derivation of the different VMS methods is presented in some detail and their relation among each other and also to other discretizations is discussed. Another emphasis consists in giving an overview about known results from the numerical analysis of the VMS methods. A few results are presented in detail to highlight the used mathematical tools. Furthermore, the literature presenting numerical studies with the VMS methods is surveyed and the obtained results are summarized.
  • Item
    Finite element pressure stabilizations for incompressible flow problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) John, Volker; Knobloch, Petr; Wilbrandt, Ulrich
    Discretizations of incompressible flow problems with pairs of finite element spaces that do not satisfy a discrete inf-sup condition require a so-called pressure stabilization. This paper gives an overview and systematic assessment of stabilized methods, including the respective error analysis.
  • Item
    An assessment of solvers for algebraically stabilized discretizations of convection-diffusion-reaction equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Jha, Abhinav; Pártl, Ondřej; Ahmed, Naveed; Kuzmin, Dmitri
    We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and P1 or Q1 finite elements. Time integration is performed using the Crank-Nicolson method or an explicit strong stability preserving Runge-Kutta method. Nonlinear systems are solved using a fixed-point iteration method, which requires solution of large linear systems at each iteration or time step. The great variety of options in the choice of discretization methods and solver components calls for a dedicated comparative study of existing approaches. To perform such a study, we define new 3D test problems for time dependent and stationary convection-diffusion-reaction equations. The results of our numerical experiments illustrate how the limiting technique, time discretization and solver impact on the overall performance.
  • Item
    On iterative subdomain methods for the Stokes-Darcy problem
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Caiazzo, Alfonso; John, Volker; Wilbrandt, Ulrich
    Iterative subdomain methods for the StokesDarcy problem that use Robin boundary conditions on the interface are reviewed. Their common underlying structure and their main differences are identified. In particular, it is clarified that there are different updating strategies for the interface conditions. For small values of fluid viscosity and hydraulic permeability, which are relevant in applications from geosciences, it is shown in numerical studies that only one of these updating strategies leads to an efficient numerical method, if this strategy is used in combination with appropriate parameters in the Robin boundary conditions. In particular, it is observed that the values of appropriate parameters are larger than those proposed so far. Not only the size but also the ratio of appropriate Robin parameters depends on the coefficients of the problem.