Search Results

Now showing 1 - 2 of 2
  • Item
    Plasma-oxidative degradation of polyphenolics – Influence of non-thermal gas discharges with respect to fresh produce processing
    (Prague : ČSAZV, 2009) Grzegorzewski, F.; Schlüter, O.; Ehlbeck, J.; Weltmann, K.-D.; Geyer, M.; Kroh, L.W.; Rohn, S.
    Non-thermal plasma treatment is a promising technology to enhance the shelf-life of fresh or minimaly processed food. An efficient inactivation of microorganisms comes along with a moderate heating of the treated surface. To elucidate the influence of highly reactive plasma-immanent species on the stability and chemical behaviour of phytochemicals, several polyphenolics were exposed to an atmospheric pressure plasma jet (APPJ). The selected flavonoids are ideal target compounds due to their antioxidant activity protecting cells against the damaging effects of reactive oxygen species such as singlet oxygen, superoxide, peroxyl radicals, hydroxyl radicals and peroxynitrite. Reactions were carried out at various radio-frequency voltages, using Ar as a feeding gas. Degradation was followed by reversed-phase high-performance liquid chromatography.
  • Item
    Response of the wood-decay fungus Schizophyllum commune to co-occurring microorganisms
    (San Francisco, California, US : PLOS, 2020) Krause, Katrin; Jung, Elke-Martina; Lindner, Julia; Hardiman, Imam; Petschner, Jessica; Madhavan, Soumya; Matthäus, Christian; Kai, Marco; Menezes, Riya Christina; Popp, Jürgen; Svatoš, Aleš; Kothe, Erika
    Microorganisms are constantly interacting in a given environment by a constant exchange of signaling molecules. In timber, wood-decay fungi will come into contact with other fungi and bacteria. In naturally bleached wood, dark, pigmented lines arising from confrontation of two fungi often hint at such interactions. The metabolites (and pigment) exchange was investigated using the lignicolous basidiomycete Schizophyllum commune, and co-occurring fungi and bacteria inoculated directly on sterilized wood, or on media. In interactions with competitive wood degrading fungi, yeasts or bacteria, different competition strategies and communication types were observed, and stress reactions, as well as competitor-induced enzymes or pigments were analyzed. Melanin, indole, flavonoids and carotenoids were shown to be induced in S. commune interactions. The induced genes included multi-copper oxidases lcc1, lcc2, mco1, mco2, mco3 and mco4, possibly involved in both pigment production and lignin degradation typical for wood bleaching by wood-decay fungi.