Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

A diffuse interface model for quasi-incrompressible flows : sharp interface limits and numerics

2012, Aki, Gonca, Daube, Johannes, Dreyer, Wolfgang, Giesselmann, Jan, Kränkel, Mirko, Kraus, Christiane

In this contribution, we investigate a diffuse interface model for quasi–incompressible flows. We determine corresponding sharp interface limits of two different scalings. The sharp interface limit is deduced by matched asymptotic expansions of the fields in powers of the interface. In particular, we study solutions of the derived system of inner equations and discuss the results within the general setting of jump conditions for sharp interface models. Furthermore, we treat, as a subproblem, the convective Cahn–Hilliard equation numerically by a Local Discontinuous Galerkin scheme.

Loading...
Thumbnail Image
Item

Two-phase flows for sedimentation of suspensions

2020, Peschka, Dirk, Rosenau, Matthias

We present a two-phase flow model that arises from energetic-variational arguments and study its implication for the sedimentation of buoyant particles in a viscous fluid inside a Hele--Shaw cell and also compare corresponding simulation results to experiments. Based on a minimal dissipation argument, we provide a simplified 1D model applicable to sedimentation and study its properties and the numerical discretization. We also explore different aspects of its numerical discretization in 2D. The focus is on different possible stabilization techniques and their impact on the qualitative behavior of solutions. We use experimental data to verify some first qualitative model predictions and discuss these experiments for different stages of batch sedimentation.

Loading...
Thumbnail Image
Item

Gradient structures for flows of concentrated suspensions

2018, Peschka, Dirk, Thomas, Marita, Ahnert, Tobias, Münch, Andreas, Wagner, Barbara

In this work we investigate a two-phase model for concentrated suspensions. We construct a PDE formulation using a gradient flow structure featuring dissipative coupling between fluid and solid phase as well as different driving forces. Our construction is based on the concept of flow maps that also allows it to account for flows in moving domains with free boundaries. The major difference compared to similar existing approaches is the incorporation of a non-smooth twohomogeneous term to the dissipation potential, which creates a normal pressure even for pure shear flows.