Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

PEGylation of Guanidinium and Indole Bearing Poly(methacrylamide)s - Biocompatible Terpolymers for pDNA Delivery

2021, Cokca, Ceren, Hack, Franz J., Costabel, Daniel, Herwig, Kira, Hülsmann, Juliana, Then, Patrick, Heintzmann, Rainer, Fischer, Dagmar, Peneva, Kalina

This study describes the first example for shielding of a high performing terpolymer that consists of N-(2-hydroxypropyl)methacrylamide (HPMA), N-(3-guanidinopropyl)methacrylamide (GPMA), and N-(2-indolethyl)methacrylamide monomers (IEMA) by block copolymerization of a polyethylene glycol derivative – poly(nona(ethylene glycol)methyl ether methacrylate) (P(MEO9MA)) via reversible addition–fragmentation chain transfer (RAFT) polymerization. The molecular weight of P(MEO9MA) is varied from 3 to 40 kg mol–1 while the comonomer content of HPMA, GPMA, and IEMA is kept comparable. The influence of P(MEO9MA) block with various molecular weights is investigated over cytotoxicity, plasmid DNA (pDNA) binding, and transfection efficiency of the resulting polyplexes. Overall, the increase in molecular weight of P(MEO9MA) block demonstrates excellent biocompatibility with higher cell viability in L-929 cells and an efficient binding to pDNA at N/P ratio of 2. The significant transfection efficiency in CHO-K1 cells at N/P ratio 20 is obtained for block copolymers with molecular weight of P(MEO9MA) up to 10 kg mol–1. Moreover, a fluorescently labeled analogue of P(MEO9MA), bearing perylene monoimide methacrylamide (PMIM), is introduced as a comonomer in RAFT polymerization. Polyplexes consisting of labeled block copolymer with 20 kg mol–1 of P(MEO9MA) and pDNA are incubated in Hela cells and investigated through structured illumination microscopy (SIM).

Loading...
Thumbnail Image
Item

Cellular Deformations Induced by Conical Silicon Nanowire Arrays Facilitate Gene Delivery

2019, Chen, Y., Aslanoglou, S., Gervinskas, G., Abdelmaksoud, H., Voelcker, N.H., Elnathan, R.

Engineered cell–nanostructured interfaces generated by vertically aligned silicon nanowire (SiNW) arrays have become a promising platform for orchestrating cell behavior, function, and fate. However, the underlying mechanism in SiNW-mediated intracellular access and delivery is still poorly understood. This study demonstrates the development of a gene delivery platform based on conical SiNW arrays for mechanical cell transfection, assisted by centrifugal force, for both adherent and nonadherent cells in vitro. Cells form focal adhesions on SiNWs within 6 h, and maintain high viability and motility. Such a functional and dynamic cell–SiNW interface features conformational changes in the plasma membrane and in some cases the nucleus, promoting both direct penetration and endocytosis; this synergistically facilitates SiNW-mediated delivery of nucleic acids into immortalized cell lines, and into difficult-to-transfect primary immune T cells without pre-activation. Moreover, transfected cells retrieved from SiNWs retain the capacity to proliferate—crucial to future biomedical applications. The results indicate that SiNW-mediated intracellular delivery holds great promise for developing increasingly sophisticated investigative and therapeutic tools. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim