Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The geodynamic and limnological evolution of Balkan Lake Ohrid, possibly the oldest extant lake in Europe

2022, Wagner, Bernd, Tauber, Paul, Francke, Alexander, Leicher, Niklas, Binnie, Steven A., Cvetkoska, Aleksandra, Jovanovska, Elena, Just, Janna, Lacey, Jack H., Levkov, Zlatko, Lindhorst, Katja, Kouli, Katerina, Krastel, Sebastian, Panagiotopoulos, Konstantinos, Ulfers, Arne, Zaova, Dušica, Donders, Timme H., Grazhdani, Andon, Koutsodendris, Andreas, Leng, Melanie J., Sadori, Laura, Scheinert, Mirko, Vogel, Hendrik, Wonik, Thomas, Zanchetta, Giovanni, Wilke, Thomas

Studies of the upper 447 m of the DEEP site sediment succession from central Lake Ohrid, Balkan Peninsula, North Macedonia and Albania provided important insights into the regional climate history and evolutionary dynamics since permanent lacustrine conditions established at 1.36 million years ago (Ma). This paper focuses on the entire 584-m-long DEEP sediment succession and a comparison to a 197-m-long sediment succession from the Pestani site ~5 km to the east in the lake, where drilling ended close to the bedrock, to unravel the earliest history of Lake Ohrid and its basin development. 26Al/10Be dating of clasts from the base of the DEEP sediment succession implies that the sedimentation in the modern basin started at c. 2 Ma. Geophysical, sedimentological and micropalaeontological data allow for chronological information to be transposed from the DEEP to the Pestani succession. Fluvial conditions, slack water conditions, peat formation and/or complete desiccation prevailed at the DEEP and Pestani sites until 1.36 and 1.21 Ma, respectively, before a larger lake extended over both sites. Activation of karst aquifers to the east probably by tectonic activity and a potential existence of neighbouring Lake Prespa supported filling of Lake Ohrid. The lake deepened gradually, with a relatively constant vertical displacement rate of ~0.2 mm a−1 between the central and the eastern lateral basin and with greater water depth presumably during interglacial periods. Although the dynamic environment characterized by local processes and the fragmentary chronology of the basal sediment successions from both sites hamper palaeoclimatic significance prior to the existence of a larger lake, the new data provide an unprecedented and detailed picture of the geodynamic evolution of the basin and lake that is Europe’s presumed oldest extant freshwater lake.

Loading...
Thumbnail Image
Item

Reduction of biosphere life span as a consequence of geodynamics

2000, Franck, S., Block, A., Von Bloh, W., Bounama, C., Schellnhuber, H.J., Svirezhev, Y.

The long-term co-evolution of the geosphere-biosphere complex from the Proterozoic up to 1.5 billion years into the planet's future is investigated using a conceptual earth system model including the basic geodynamic processes. The model focusses on the global carbon cycles as mediated by life and driven by increasing solar luminosity and plate tectonics. The main CO2 sink, the weathering of silicates, is calculated as a function of biologic activity, global run-off and continental growth. The main CO2 source, tectonic processes dominated by sea-floor spreading, is determined using a novel semi-empirical scheme. Thus, a geodynamic extension of previous geostatic approaches can be achieved. As a major result of extensive numerical investigations, the 'terrestrial life corridor', i.e., the biogeophysical domain supporting a photosynthesis-based ecosphere in the planetary past and in the future, can be identified. Our findings imply, in particular, that the remaining life-span of the biosphere is considerably shorter (by a few hundred million years) than the value computed with geostatic models by other groups. The 'habitable-zone concept' is also revisited, revealing the band of orbital distances from the sun warranting earth-like conditions. It turns out that this habitable zone collapses completely in some 1.4 billion years from now as a consequence of geodynamics.