Search Results

Now showing 1 - 3 of 3
  • Item
    The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2021) Deinhart, Victor; Kern, Lisa-Marie; Kirchhof, Jan N.; Juergensen, Sabrina; Sturm, Joris; Krauss, Enno; Feichtner, Thorsten; Kovalchuk, Sviatoslav; Schneider, Michael; Engel, Dieter; Pfau, Bastian; Hecht, Bert; Bolotin, Kirill I.; Reich, Stephanie; Höflich, Katja
    Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o-mat are presented.
  • Item
    Ultrafast two-dimensional THz spectroscopy of graphene
    (Les Ulis : EDP Sciences, 2013) Bowlan, P.; Martinez Moreno, E.; Reimann, K.; Woerner, M.; Elsaesser, T.
    With two-dimensional THz spectroscopy the dynamics of low-energy carriers in graphene is determined. Both intra- and interband absorption contribute to the observed ultrafast pump-probe signals.
  • Item
    The sequence to hydrogenate coronene cations: A journey guided by magic numbers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Cazaux, Stéphanie; Boschman, Leon; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas
    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2.