Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Albedo and heat transport in 3-D model simulations of the early Archean climate

2013, Kienert, H., Feulner, G., Petoukhov, V.

At the beginning of the Archean eon (ca. 3.8 billion years ago), the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun paradox" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-D model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. In order to do so, we have appropriately modified an intermediate complexity climate model that couples a statistical-dynamical atmosphere model (involving parameterizations of the dynamics) to an ocean general circulation model and a thermodynamic-dynamic sea-ice model. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth"). We find a reduction in meridional heat transport compared to today, which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterization of the ice-albedo feedback for 1-D model simulations of the early Archean and thus the faint young Sun problem.

Loading...
Thumbnail Image
Item

Systems describing electrothermal effects with p(x)-Laplacian like structure for discontinuous variable exponents

2016, Bulíc̆ek, Miroslav, Glitzky, Annegret, Liero, Matthias

We consider a coupled system of two elliptic PDEs, where the elliptic term in the first equation shares the properties of the p(x)-Laplacian with discontinuous exponent, while in the second equation we have to deal with an a priori L1 term on the right hand side. Such a system of equations is suitable for the description of various electrothermal effects, in particular those, where the non-Ohmic behavior can change dramatically with respect to the spatial variable. We prove the existence of a weak solution under very weak assumptions on the data and also under general structural assumptions on the constitutive equations of the model. The main difficulty consists in the fact that we have to overcome simultaneously two obstacles

Loading...
Thumbnail Image
Item

Thermistor systems of p(x)-Laplace-type with discontinuous exponents via entropy solutions

2016, Bulicek, Miroslav, Glitzky, Annegret, Liero, Matthias

We show the existence of solutions to a system of elliptic PDEs, that was recently introduced to describe the electrothermal behavior of organic semiconductor devices. Here, two difficulties appear: (i) the elliptic term in the current-flow equation is of p(x)-Laplacian-type with discontinuous exponent p, which limits the use of standard methods, and (ii) in the heat equation, we have to deal with an a priori L1 term on the right hand side describing the Joule heating in the device. We prove the existence of a weak solution under very weak assumptions on the data. Our existence proof is based on Schauder's fixed point theorem and the concept of entropy solutions for the heat equation. Here, the crucial point is the continuous dependence of the entropy solutions on the data of the problem.