Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Hemispheric and Seasonal Contrast in Cloud Thermodynamic Phase From A‐Train Spaceborne Instruments

2021, Villanueva, Diego, Senf, Fabian, Tegen, Ina

Aerosol-cloud interactions are an important source of uncertainty in current climate models. To understand and quantify the influence of ice-nucleating particles in cloud glaciation, it is crucial to have a reliable estimation of the hemispheric and seasonal contrast in cloud top phase, which is believed to result from the higher dust aerosol loading in boreal spring. For this reason, we locate and quantify these contrasts by combining three different A-Train cloud-phase products for the period 2007–2010. These products rely on a spaceborne lidar, a lidar-radar synergy, and a radiometer-polarimeter synergy. We show that the cloud-phase from the product combination is more reliable and that the estimation of the hemispheric and seasonal contrast has a lower error compared to the individual products. To quantify the contrast in cloud-phase, we use the hemispheric difference in ice cloud frequency normalized by the liquid cloud frequency in the southern hemisphere between −42 °C and 0 °C. In the midlatitudes, from −15 to −30 °C, the hemispheric contrasts increase with decreasing temperature. At −30 °C, the hemispheric contrast varies from 29% to 39% for the individual cloud-phase products and from 52% to 73% for the product combination. Similarly, in the northern hemisphere, we assess the seasonal contrast between spring and fall normalized by the liquid cloud frequency during fall. At −30 °C, the seasonal contrast ranges from 21% to 39% for the individual cloud-phase products and from 54% to 75% for the product combination.

Loading...
Thumbnail Image
Item

Heterogeneous freezing on pyroelectric poly(vinylidene fluoride-co-trifluoroethylene) thin films

2020, Apelt, Sabine, Höhne, Susanne, Uhlmann, Petra, Bergmann, Ute

Active deicing of technical surfaces, such as for wind turbines and heat exchangers, currently requires the usage of heat or chemicals. Passive coating strategies that postpone the freezing of covering water would be beneficial in order to save costs and energy. One hypothesis is that pyroelectric active materials can achieve this because of the surface charges generated on these materials when they are subject to a temperature change. High-quality poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) thin films with a high crystallinity, prefererd edge-on orientation, low surface roughness, and comprised of the β-analogous ferroelectric phase were deposited by spin-coating. Freezing experiments with a cooling rate of 1 K min−1 were made on P(VDF-TrFE) coatings in order to separate the effect of different parameters such as the poling direction, film thickness, used solvent, deposition process, underlying substrate, and annealing temperature on the achievable supercooling. The topography and the underlying substrate significantly changed the distribution of freezing temperatures of water droplets in contact with these thin films. In contrast, no significant effect of the thickness, morphology, or pyroelectric effect of the as-prepared domain-state on the freezing temperatures was found.