Search Results

Now showing 1 - 3 of 3
  • Item
    Experimental evaluation of signal-to-noise in spectro-holography via modified uniformly redundant arrays in the soft x-ray and extreme ultraviolet spectral regime
    (Bristol : IOP Publ., 2017-05-08) Günther, Christian M.; Guehrs, Erik; Schneider, Michael; Pfau, Bastian; von Korff Schmising, Clemens; Geilhufe, Jan; Schaffert, Stefan; Eisebitt, Stefan
    We present dichroic x-ray lensless magnetic imaging by Fourier transform holography with an extended reference scheme via a modified uniformly redundant array (mURA). Holographic images of magnetic domains simultaneously generated by a single pinhole reference as well as by a mURA reference are compared with respect to the signal-to-noise ratio (SNR) as a function of exposure time. We apply this approach for spectro-holographic imaging of ferromagnetic domain patterns in Co/Pt multilayer films. Soft x-rays with wavelengths of 1.59 nm (Co L3 absorption edge) and 20.8 nm (Co M2,3 absorption edges) are used for image formation and to generate contrast via x-ray magnetic circular dichroism. For a given exposure time, the mURA-based holography allows to decouple the reconstruction SNR from the spatial resolution. For 1.59 nm wavelength, the reconstruction via the extended reference scheme shows no significant loss of spatial resolution compared to the single pinhole reference. In contrast, at 20.8 nm wavelength the single pinhole reveals some very intricate features which are lost in the image generated by the mURA, although overall a high-quality image is generated. The SNR-advantage of the mURA scheme is most notable when the hologram has to be encoded with few photons, while errors associated with the increased complexity of the reconstruction process reduce the advantage for high-photon-number experiments.
  • Item
    Attosecond time-resolved photoelectron holography
    ([London] : Nature Publishing Group UK, 2018) Porat, G.; Alon, G.; Rozen, S.; Pedatzur, O.; Krüger, M.; Azoury, D.; Natan, A.; Orenstein, G.; Bruner, B.D.; Vrakking, M. J.J.; Dudovich, N.
    Ultrafast strong-field physics provides insight into quantum phenomena that evolve on an attosecond time scale, the most fundamental of which is quantum tunneling. The tunneling process initiates a range of strong field phenomena such as high harmonic generation (HHG), laser-induced electron diffraction, double ionization and photoelectron holography - all evolving during a fraction of the optical cycle. Here we apply attosecond photoelectron holography as a method to resolve the temporal properties of the tunneling process. Adding a weak second harmonic (SH) field to a strong fundamental laser field enables us to reconstruct the ionization times of photoelectrons that play a role in the formation of a photoelectron hologram with attosecond precision. We decouple the contributions of the two arms of the hologram and resolve the subtle differences in their ionization times, separated by only a few tens of attoseconds.
  • Item
    Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies
    (London : Nature Publishing Group, 2017) Zürch, M.; Jung, R.; Späth, C.; Tümmler, J.; Guggenmos, A.; Attwood, D.; Kleineberg, U.; Stiel, H.; Spielmann, C.
    Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12| ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.