Search Results

Now showing 1 - 7 of 7
  • Item
    Common solar wind drivers behind magnetic storm–magnetospheric substorm dependency
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018) Runge, Jakob; Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Donner, Reik V.
    The dynamical relationship between magnetic storms and magnetospheric substorms is one of the most controversial issues of contemporary space research. Here, we address this issue through a causal inference approach to two corresponding indices in conjunction with several relevant solar wind variables. We find that the vertical component of the interplanetary magnetic field is the strongest and common driver of both storms and substorms. Further, our results suggest, at least based on the analyzed indices, that there is no statistical evidence for a direct or indirect dependency between substorms and storms and their statistical association can be explained by the common solar drivers. Given the powerful statistical tests we performed (by simultaneously taking into account time series of indices and solar wind variables), a physical mechanism through which substorms directly or indirectly drive storms or vice versa is, therefore, unlikely.
  • Item
    Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century
    (London : Nature Publishing Group, 2017) Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.J.H.; Döll, P.; Gosling, S.N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; Satoh, Y.; Kim, H.; Ward, P.J.
    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971-2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4-16.5%) of the global population but alleviating it for another 8.3% (6.4-15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI.
  • Item
    Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events
    (London : Nature Publishing Group, 2017) Mann, M.E.; Rahmstorf, S.; Kornhuber, K.; Steinman, B.A.; Miller, S.K.; Coumou, D.
    Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6-8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art ("CMIP5") historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability.
  • Item
    The Likelihood of Recent Record Warmth
    (London : Nature Publishing Group, 2016) Mann, M.E.; Rahmstorf, S.; Steinman, B.A.; Tingley, M.; Miller, S.K.
  • Item
    Two-thirds of global cropland area impacted by climate oscillations
    (London : Nature Publishing Group, 2018) Heino, M.; Puma, M.J.; Ward, P.J.; Gerten, D.; Heck, V.; Siebert, S.; Kummu, M.
    The El Niño Southern Oscillation (ENSO) peaked strongly during the boreal winter 2015-2016, leading to food insecurity in many parts of Africa, Asia and Latin America. Besides ENSO, the Indian Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO) are known to impact crop yields worldwide. Here we assess for the first time in a unified framework the relationships between ENSO, IOD and NAO and simulated crop productivity at the sub-country scale. Our findings reveal that during 1961-2010, crop productivity is significantly influenced by at least one large-scale climate oscillation in two-thirds of global cropland area. Besides observing new possible links, especially for NAO in Africa and the Middle East, our analyses confirm several known relationships between crop productivity and these oscillations. Our results improve the understanding of climatological crop productivity drivers, which is essential for enhancing food security in many of the most vulnerable places on the planet.
  • Item
    Reducing Urban Greenhouse Gas Footprints
    (London : Nature Publishing Group, 2017) Pichler, P.-P.; Zwickel, T.; Chavez, A.; Kretschmer, T.; Seddon, J.; Weisz, H.
    Cities are economically open systems that depend on goods and services imported from national and global markets to satisfy their material and energy requirements. Greenhouse Gas (GHG) footprints are thus a highly relevant metric for urban climate change mitigation since they not only include direct emissions from urban consumption activities, but also upstream emissions, i.e. emissions that occur along the global production chain of the goods and services purchased by local consumers. This complementary approach to territorially-focused emission accounting has added critical nuance to the debate on climate change mitigation by highlighting the responsibility of consumers in a globalized economy. Yet, city officials are largely either unaware of their upstream emissions or doubtful about their ability to count and control them. This study provides the first internationally comparable GHG footprints for four cities (Berlin, Delhi NCT, Mexico City, and New York metropolitan area) applying a consistent method that can be extended to other global cities using available data. We show that upstream emissions from urban household consumption are in the same order of magnitude as cities' overall territorial emissions and that local policy leverage to reduce upstream emissions is larger than typically assumed.
  • Item
    A deforestation-induced tipping point for the South American monsoon system
    (London : Nature Publishing Group, 2017) Boers, N.; Marwan, N.; Barbosa, H.M.J.; Kurths, J.
    The Amazon rainforest has been proposed as a tipping element of the earth system, with the possibility of a dieback of the entire ecosystem due to deforestation only of parts of the rainforest. Possible physical mechanisms behind such a transition are still subject to ongoing debates. Here, we use a specifically designed model to analyse the nonlinear couplings between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the South American continent. These couplings are associated with a westward cascade of precipitation and evapotranspiration across the Amazon. We investigate impacts of deforestation on the South American monsoonal circulation with particular focus on a previously neglected positive feedback related to condensational latent heating over the rainforest, which strongly enhances atmospheric moisture inflow from the Atlantic. Our results indicate the existence of a tipping point. In our model setup, crossing the tipping point causes precipitation reductions of up to 40% in non-deforested parts of the western Amazon and regions further downstream. The responsible mechanism is the breakdown of the aforementioned feedback, which occurs when deforestation reduces transpiration to a point where the available atmospheric moisture does not suffice anymore to release the latent heat needed to maintain the feedback.