Search Results

Now showing 1 - 10 of 11
  • Item
    Common solar wind drivers behind magnetic storm–magnetospheric substorm dependency
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018) Runge, Jakob; Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Donner, Reik V.
    The dynamical relationship between magnetic storms and magnetospheric substorms is one of the most controversial issues of contemporary space research. Here, we address this issue through a causal inference approach to two corresponding indices in conjunction with several relevant solar wind variables. We find that the vertical component of the interplanetary magnetic field is the strongest and common driver of both storms and substorms. Further, our results suggest, at least based on the analyzed indices, that there is no statistical evidence for a direct or indirect dependency between substorms and storms and their statistical association can be explained by the common solar drivers. Given the powerful statistical tests we performed (by simultaneously taking into account time series of indices and solar wind variables), a physical mechanism through which substorms directly or indirectly drive storms or vice versa is, therefore, unlikely.
  • Item
    Farmer typology to understand differentiated climate change adaptation in Himalaya
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Shukla, Roopam; Agarwal, Ankit; Gornott, Christoph; Sachdeva, Kamna; Joshi, P.K.
    Smallholder farmers’ responses to the climate-induced agricultural changes are not uniform but rather diverse, as response adaptation strategies are embedded in the heterogonous agronomic, social, economic, and institutional conditions. There is an urgent need to understand the diversity within the farming households, identify the main drivers and understand its relationship with household adaptation strategies. Typology construction provides an efficient method to understand farmer diversity by delineating groups with common characteristics. In the present study, based in the Uttarakhand state of Indian Western Himalayas, five farmer types were identified on the basis of resource endowment and agriculture orientation characteristics. Factor analysis followed by sequential agglomerative hierarchial and K-means clustering was use to delineate farmer types. Examination of adaptation strategies across the identified farmer types revealed that mostly contrasting and type-specific bundle of strategies are adopted by farmers to ensure livelihood security. Our findings show that strategies that incurred high investment, such as infrastructural development, are limited to high resource-endowed farmers. In contrast, the low resourced farmers reported being progressively disengaging with farming as a livelihood option. Our results suggest that the proponents of effective adaptation policies in the Himalayan region need to be cognizant of the nuances within the farming communities to capture the diverse and multiple adaptation needs and constraints of the farming households. © 2019, The Author(s).
  • Item
    Intestinal epithelial barrier integrity investigated by label-free techniques in ulcerative colitis patients
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2023) Quansah, Elsie; Gardey, Elena; Ramoji, Anuradha; Meyer-Zedler, Tobias; Goehrig, Bianca; Heutelbeck, Astrid; Hoeppener, Stephanie; Schmitt, Michael; Waldner, Maximillian; Stallmach, Andreas; Popp, Jürgen
    The intestinal epithelial barrier, among other compartments such as the mucosal immune system, contributes to the maintenance of intestinal homeostasis. Therefore, any disturbance within the epithelial layer could lead to intestinal permeability and promote mucosal inflammation. Considering that disintegration of the intestinal epithelial barrier is a key element in the etiology of ulcerative colitis, further assessment of barrier integrity could contribute to a better understanding of the role of epithelial barrier defects in ulcerative colitis (UC), one major form of chronic inflammatory bowel disease. Herein, we employ fast, non-destructive, and label-free non-linear methods, namely coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), two-photon excited fluorescence (TPEF), and two-photon fluorescence lifetime imaging (2P-FLIM), to assess the morpho-chemical contributions leading to the dysfunction of the epithelial barrier. For the first time, the formation of epithelial barrier gaps was directly visualized, without sophisticated data analysis procedures, by the 3D analysis of the colonic mucosa from severely inflamed UC patients. The results were compared with histopathological and immunofluorescence images and validated using transmission electron microscopy (TEM) to indicate structural alterations of the apical junction complex as the underlying cause for the formation of the epithelial barrier gaps. Our findings suggest the potential advantage of non-linear multimodal imaging is to give precise, detailed, and direct visualization of the epithelial barrier in the gastrointestinal tract, which can be combined with a fiber probe for future endomicroscopy measurements during real-time in vivo imaging.
  • Item
    Climate change and specialty coffee potential in Ethiopia
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Chemura, Abel; Mudereri, Bester Tawona; Yalew, Amsalu Woldie; Gornott, Christoph
    Current climate change impact studies on coffee have not considered impact on coffee typicities that depend on local microclimatic, topographic and soil characteristics. Thus, this study aims to provide a quantitative risk assessment of the impact of climate change on suitability of five premium specialty coffees in Ethiopia. We implement an ensemble model of three machine learning algorithms to predict current and future (2030s, 2050s, 2070s, and 2090s) suitability for each specialty coffee under four Shared Socio-economic Pathways (SSPs). Results show that the importance of variables determining coffee suitability in the combined model is different from those for specialty coffees despite the climatic factors remaining more important in determining suitability than topographic and soil variables. Our model predicts that 27% of the country is generally suitable for coffee, and of this area, only up to 30% is suitable for specialty coffees. The impact modelling showed that the combined model projects a net gain in coffee production suitability under climate change in general but losses in five out of the six modelled specialty coffee growing areas. We conclude that depending on drivers of suitability and projected impacts, climate change will significantly affect the Ethiopian speciality coffee sector and area-specific adaptation measures are required to build resilience.
  • Item
    Decay radius of climate decision for solar panels in the city of Fresno, USA
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Barton-Henry, Kelsey; Wenz, Leonie; Levermann, Anders
    To design incentives towards achieving climate mitigation targets, it is important to understand the mechanisms that affect individual climate decisions such as solar panel installation. It has been shown that peer effects are important in determining the uptake and spread of household photovoltaic installations. Due to coarse geographical data, it remains unclear whether this effect is generated through geographical proximity or within groups exhibiting similar characteristics. Here we show that geographical proximity is the most important predictor of solar panel implementation, and that peer effects diminish with distance. Using satellite imagery, we build a unique geo-located dataset for the city of Fresno to specify the importance of small distances. Employing machine learning techniques, we find the density of solar panels within the shortest measured radius of an address is the most important factor in determining the likelihood of that address having a solar panel. The importance of geographical proximity decreases with distance following an exponential curve with a decay radius of 210 meters. The dependence is slightly more pronounced in low-income groups. These findings support the model of distance-related social diffusion, and suggest priority should be given to seeding panels in areas where few exist.
  • Item
    A network-based microfoundation of Granovetter’s threshold model for social tipping
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Wiedermann, Marc; Smith, E. Keith; Heitzig, Jobst; Donges, Jonathan F.
    Social tipping, where minorities trigger larger populations to engage in collective action, has been suggested as one key aspect in addressing contemporary global challenges. Here, we refine Granovetter’s widely acknowledged theoretical threshold model of collective behavior as a numerical modelling tool for understanding social tipping processes and resolve issues that so far have hindered such applications. Based on real-world observations and social movement theory, we group the population into certain or potential actors, such that – in contrast to its original formulation – the model predicts non-trivial final shares of acting individuals. Then, we use a network cascade model to explain and analytically derive that previously hypothesized broad threshold distributions emerge if individuals become active via social interaction. Thus, through intuitive parameters and low dimensionality our refined model is adaptable to explain the likelihood of engaging in collective behavior where social-tipping-like processes emerge as saddle-node bifurcations and hysteresis. © 2020, The Author(s).
  • Item
    Monsoon forced evolution of savanna and the spread of agro-pastoralism in peninsular India
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Riedel, Nils; Fuller, Dorian Q.; Marwan, Norbert; Poretschkin, Constantin; Basavaiah, Nathani; Menzel, Philip; Ratnam, Jayashree; Prasad, Sushma; Sachse, Dirk; Sankaran, Mahesh; Sarkar, Saswati; Stebich, Martina
    An unresolved issue in the vegetation ecology of the Indian subcontinent is whether its savannas, characterized by relatively open formations of deciduous trees in C4-grass dominated understories, are natural or anthropogenic. Historically, these ecosystems have widely been regarded as anthropogenic-derived, degraded descendants of deciduous forests. Despite recent work showing that modern savannas in the subcontinent fall within established bioclimatic envelopes of extant savannas elsewhere, the debate persists, at least in part because the regions where savannas occur also have a long history of human presence and habitat modification. Here we show for the first time, using multiple proxies for vegetation, climate and disturbances from high-resolution, well-dated lake sediments from Lonar Crater in peninsular India, that neither anthropogenic impact nor fire regime shifts, but monsoon weakening during the past ~ 6.0 kyr cal. BP, drove the expansion of savanna at the expense of forests in peninsular India. Our results provide unambiguous evidence for a climate-induced origin and spread of the modern savannas of peninsular India at around the mid-Holocene. We further propose that this savannization preceded and drove the introduction of agriculture and development of sedentism in this region, rather than vice-versa as has often been assumed.
  • Item
    Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Reichert, Doreen; Friedrichs, Jens; Ritter, Steffi; Käubler, Theresa; Werner, Carsten; Bornhäuser, Martin; Corbeil, Denis
    Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used.
  • Item
    Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo
    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.
  • Item
    Elucidation of Plasma-induced Chemical Modifications on Glutathione and Glutathione Disulphide
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2017-10-23) Klinkhammer, Christina; Verlackt, Christof; Śmiłowicz, Dariusz; Kogelheide, Friederike; Bogaerts, Annemie; Metzler-Nolte, Nils; Stapelmann, Katharina; Havenith, Martina; Lackmann, Jan-Wilm
    Cold atmospheric pressure plasmas are gaining increased interest in the medical sector and clinical trials to treat skin diseases are underway. Plasmas are capable of producing several reactive oxygen and nitrogen species (RONS). However, there are open questions how plasma-generated RONS interact on a molecular level in a biological environment, e.g. cells or cell components. The redox pair glutathione (GSH) and glutathione disulphide (GSSG) forms the most important redox buffer in organisms responsible for detoxification of intracellular reactive species. We apply Raman spectroscopy, mass spectrometry, and molecular dynamics simulations to identify the time-dependent chemical modifications on GSH and GSSG that are caused by dielectric barrier discharge under ambient conditions. We find GSSG, S-oxidised glutathione species, and S-nitrosoglutathione as oxidation products with the latter two being the final products, while glutathione sulphenic acid, glutathione sulphinic acid, and GSSG are rather reaction intermediates. Experiments using stabilized pH conditions revealed the same main oxidation products as were found in unbuffered solution, indicating that the dominant oxidative or nitrosative reactions are not influenced by acidic pH. For more complex systems these results indicate that too long treatment times can cause difficult-to-handle modifications to the cellular redox buffer which can impair proper cellular function.