Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Titanium Niobium Oxide Ti2 Nb10 O29 /Carbon Hybrid Electrodes Derived by Mechanochemically Synthesized Carbide for High-Performance Lithium-Ion Batteries

2021, Budak, Öznil, Srimuk, Pattarachai, Aslan, Mesut, Shim, Hwirim, Borchardt, Lars, Presser, Volker

This work introduces the facile and scalable two-step synthesis of Ti2 Nb10 O29 (TNO)/carbon hybrid material as a promising anode for lithium-ion batteries (LIBs). The first step consisted of a mechanically induced self-sustaining reaction via ball-milling at room temperature to produce titanium niobium carbide with a Ti and Nb stoichiometric ratio of 1 to 5. The second step involved the oxidation of as-synthesized titanium niobium carbide to produce TNO. Synthetic air yielded fully oxidized TNO, while annealing in CO2 resulted in TNO/carbon hybrids. The electrochemical performance for the hybrid and non-hybrid electrodes was surveyed in a narrow potential window (1.0-2.5 V vs. Li/Li+ ) and a large potential window (0.05-2.5 V vs. Li/Li+ ). The best hybrid material displayed a specific capacity of 350 mAh g-1 at a rate of 0.01 A g-1 (144 mAh g-1 at 1 A g-1 ) in the large potential window regime. The electrochemical performance of hybrid materials was superior compared to non-hybrid materials for operation within the large potential window. Due to the advantage of carbon in hybrid material, the rate handling was faster than that of the non-hybrid one. The hybrid materials displayed robust cycling stability and maintained ca. 70 % of their initial capacities after 500 cycles. In contrast, only ca. 26 % of the initial capacity was maintained after the first 40 cycles for non-hybrid materials. We also applied our hybrid material as an anode in a full-cell lithium-ion battery by coupling it with commercial LiMn2 O4 .

Loading...
Thumbnail Image
Item

Carbide-Derived Niobium Pentoxide with Enhanced Charge Storage Capacity for Use as a Lithium-Ion Battery Electrode

2020, Budak, Ö., Geißler, M., Becker, D., Kruth, A., Quade, A., Haberkorn, R., Kickelbick, G., Etzold, B. J. M., Presser, V.

Nb2O5 has been explored as a promising anode material for use as lithium-ion batteries (LIBs), but depending on the crystal structure, the specific capacity was always reported to be usually around or below 200 mAh/g. For the first time, we present coarse-grained Nb2O5 materials that significantly overcome this capacity limitation with the promise of enabling high power applications. Our work introduces coarse-grained carbide-derived Nb2O5 phases obtained either by a one-step or a two-step bulk conversion process. By in situ production of chlorine gas from metal chloride salt at ambient pressure, we obtain in just one step directly orthorhombic Nb2O5 alongside carbide-derived carbon (o-Nb2O5/CDC). In situ formation of chlorine gas from metal chloride salt under vacuum conditions yields CDC covering the remaining carbide core, which can be transformed into metal oxides covered by a carbon shell upon thermal treatment in CO2 gas. The two-step process yielded a mixed-phase tetragonal and monoclinic Nb2O5 with CDC (m-Nb2O5/CDC). Our combined diffraction and spectroscopic data confirm that carbide-derived Nb2O5 materials show disordering of the crystallographic planes caused by oxygen deficiency in the structural units and, in the case of m-Nb2O5/CDC, severe stacking faults. This defect engineering allows access to a very high specific capacity exceeding the two-electron transfer process of conventional Nb2O5. The charge storage capacities of the resulting m-Nb2O5/CDC and o-Nb2O5/CDC are, in both cases, around 300 mAh/g at a specific current of 10 mA/g, thereby, the values are significantly higher than that of the state-of-the-art for Nb2O5 as a LIB anode. Carbide-derived Nb2O5 materials also show robust cycling stability over 500 cycles with capacity fading only 24% for the sample m-Nb2O5/CDC and 28% for o-Nb2O5/CDC, suggesting low degree of expansion/compaction during lithiation and delithiation.