Search Results

Now showing 1 - 2 of 2
  • Item
    Assessing inter-sectoral climate change risks: The role of ISIMIP
    (Bristol : IOP Publishing, 2017) Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Smith, Mark Stafford; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P.O.; Schewe, Jacob; van Vuuren, Detlef; Warszawski, Lila
    The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socio-economic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.
  • Item
    Carbon budgets and energy transition pathways
    (Bristol : IOP Publishing, 2016) van Vuuren, Detlef P.; van Soest, Heleen; Riahi, Keywan; Clarke, Leon; Krey, Volker; Kriegler, Elmar; Rogelj, Joeri; Schaeffer, Michiel; Tavoni, Massimo
    Scenarios from integrated assessment models can provide insights into how carbon budgets relate to other policy-relevant indicators by including information on how fast and by how much emissions can be reduced. Such indicators include the peak year of global emissions, the decarbonisation rate and the deployment of low-carbon technology. Here, we show typical values for these indicators for different carbon budgets, using the recently compiled IPCC scenario database, and discuss how these vary as a function of non-CO2 forcing, energy use and policy delay. For carbon budgets of 2000 GtCO2 and less over the 2010–2100 period, supply of low carbon technologies needs to be scaled up massively from today's levels, unless energy use is relatively low. For the subgroup of scenarios with a budget below 1000 GtCO2 (consistent with >66% chance of limiting global warming to below 2 °C relative to preindustrial levels), the 2050 contribution of low-carbon technologies is generally around 50%–75%, compared to less than 20% today (range refers to the 10–90th interval of available data).