Search Results

Now showing 1 - 3 of 3
  • Item
    High-Temperature Interaction of Liquid Gd with Y2O3
    (New York, NY : Springer, 2019) Turalska, P.; Sobczak, N.; Bruzda, G.; Kaban, I.; Mattern, N.
    The sessile drop method combined with contact heating procedure was applied for the investigation of high-temperature interaction between liquid Gd and Y2O3 substrate. Real-time behavior of Gd sample in flowing inert gas (Ar) atmosphere upon heating to and at temperature of 1362 °C was recorded using high-speed high-resolution CCD camera. The results evidenced that molten Gd wets Y2O3 substrate (the contact angle θ < 90°) immediately after melting of metal sample observed at T = 1324 °C (Tm = 1312 °C). During the first 3 min of the sessile drop test, the contact angle dropped from θ = 52° to θ = 24° and then stabilized at the final value of θf * = 33°. The solidified Gd/Y2O3 couple was subjected to structural characterization using optical microscopy, scanning electron microscopy coupled with x-ray energy-dispersive spectroscopy. The results evidenced that the wettability in the Gd/Y2O3 system has a reactive nature and the leading mechanism of the interaction between liquid Gd and Y2O3 is the dissolution of the ceramic in the liquid metal responsible for the formation of a deep crater in the substrate under the drop. Therefore, the final contact angle θf*, estimated from the side-view drop image, should be considered as an apparent value, compared to the more reliable value of θf = 70° measured on the cross section of the solidified couple. © 2019, The Author(s).
  • Item
    The effect of testing procedure on DSC measurements of Gd-Ti-Zr alloy using ZrO2 container
    (Bor : University of Belgrade, 2020) Turalska, P.; Homa, M.; Sobczak, N.; Gazda, A.; Wierzbicka-Miernik, A.; Kaban, I.
    Differential Scanning Calorimetry (DSC) was applied to determine the critical temperatures of phase transformations in the Gd40Ti30Zr30 alloy (wt%). The comparative measurements were carried out using three types of measuring devices at a temperature RT- 1650°C in the same flowing gas (Ar, 99.9992%) but applying different testing procedures, which allowed obtaining dissimilar oxygen contents in the surrounding atmosphere. The high temperature interaction and reactivity taking place between molten alloy samples and ZrO2 container during DSC tests were evaluated by structural analysis of the resulting interfaces using alloy samples solidified inside the ZrO2 containers. The conducted research has demonstrated methodological difficulties accompanying measurements of the thermophysical properties of Gd-rich alloys by the container-assisted DSC method, particularly when the tests are performed in flowing argon atmosphere with significantly reduced oxygen content. Under non-oxidizing conditions, the degradation of ZrO2 container can take place during DSC testing because the selected Gd40Ti30Zr30 alloy reacts with the ZrO2 to form a continuous interfacial reaction product layer. Under slightly oxidizing conditions, the gadolinium oxide formed in situ on the alloy surface, plays the role of a barrier for direct contact between molten alloy and container and thus may suppress or even prevent the degradation of the container and its subsequent strong bonding with the holder.