Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

State estimation with model reduction and shape variability: Application to biomedical problems

2021, Galarce Marín, Felipe, Lombardi, Damiano, Mula, Olga

We develop a mathematical and numerical framework to solve state estimation problems for applications that present variations in the shape of the spatial domain. This situation arises typically in a biomedical context where inverse problems are posed on certain organs or portions of the body which inevitably involve morphological variations. If one wants to provide fast reconstruction methods, the algorithms must take into account the geometric variability. We develop and analyze a method which allows to take this variability into account without needing any a priori knowledge on a parametrization of the geometrical variations. For this, we rely on morphometric techniques involving Multidimensional Scaling, and couple them with reconstruction algorithms that make use of reduced model spaces pre-computed on a database of geometries. We prove the potential of the method on a synthetic test problem inspired from the reconstruction of blood flows and quantities of medical interest with Doppler ultrasound imaging.

Loading...
Thumbnail Image
Item

Stopping rules for accelerated gradient methods with additive noise in gradient

2021, Vasin, Artem, Gasnikov, Alexander, Spokoiny, Vladimir

In this article, we investigate an accelerated first-order method, namely, the method of similar triangles, which is optimal in the class of convex (strongly convex) problems with a Lipschitz gradient. The paper considers a model of additive noise in a gradient and a Euclidean prox- structure for not necessarily bounded sets. Convergence estimates are obtained in the case of strong convexity and its absence, and a stopping criterion is proposed for not strongly convex problems.