Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Reactive ion beam figuring of optical aluminium surfaces

2017, Bauer, Jens, Frost, Frank, Arnold, Thomas

Ultra-smooth and arbitrarily shaped reflective optics are necessary for further progress in EUV/XUV lithography, x-ray and synchrotron technology. As one of the most important technological mirror optic materials, aluminium behaves in a rather difficult way in ultra-precision machining with such standard techniques as diamond-turning and subsequent ion beam figuring (IBF). In particular, in the latter, a strong surface roughening is obtained. Hence, up to now it has not been possible to attain the surface qualities required for UV or just visible spectral range applications. To overcome the limitations mainly caused by the aluminium alloy structural and compositional conditions, a reactive ion beam machining process using oxygen process gas is evaluated. To clarify the principle differences in the effect of oxygen gas contrary to oxygen ions on aluminium surface machining, we firstly focus on chemical-assisted ion beam etching (CAIBE) and reactive ion beam etching (RIBE) experiments in a phenomenological manner. Then, the optimum process route will be explored within a more quantitative analysis applying the concept of power spectral density (PSD) for a sophisticated treatment of the surface topography. Eventually, the surface composition is examined by means of dynamic secondary ion mass spectrometry (SIMS) suggesting a characteristic model scheme for the chemical modification of the aluminium surface during oxygen ion beam machining. Monte Carlo simulations were applied to achieve a more detailed process conception.

Loading...
Thumbnail Image
Item

Ultrapräzisionsbearbeitung mit atomaren Teilchenstrahlen : Schlussbericht zum InnoProfile-Vorhaben ; Berichtszeitraum: 01.10.2007 - 31.12.2012

2013, Arnold, Thomas, Böhm, Georg, Paetzelt, Hendrik, Eichentopf, Inga-Maria, Luteran, Johannes, Volkmer, Manuela, Mießler, André

[no abstract available]

Loading...
Thumbnail Image
Item

Improved ion beam tools for ultraprecision figure correction of curved aluminum mirror surfaces

2018, Bauer, Jens, Ulitschka, Melanie, Pietag, Fred, Arnold, Thomas

Aluminum mirrors offer great potential for satisfying the increasing demand in high-performance optical components for visible and ultraviolet applications. Ion beam figuring is an established finishing technology and in particular a promising technique for direct aluminum figure error correction. For the machining of strongly curved or arbitrarily shaped surfaces as well as the correction of low-to-mid spatial frequency figure errors, the usage of a high-performance ion beam source with low tool width is mandatory. For that reason, two different concepts of ion beam generation with high ion current density and narrow beam width are discussed. (1) A concave ion beam extraction grid system is used for apertureless constriction of ion beams in the low millimeter range. An oxygen ion beam with a full-width at half-maximum (FWHM) of 4.0 mm with an ion current density of 29.8  mA  /  cm2 was achieved. (2) For even smaller ion beams, a conic aperture design with a submillimeter-sized exit opening was tested. A nitrogen ion beam with an FWHM down to 0.62 mm with an ion current density of 4.6  mA  /  cm2 was obtained. In situ ion current density mapping is performed by scanning Faraday probe measurements. Special interest is set on the data evaluation for submillimeter ion beam analysis.

Loading...
Thumbnail Image
Item

Finishing of metal optics by ion beam technologies

2019, Bauer, Jens, Frost, Frank, Lehmann, Antje, Ulitschka, Melanie, Li, Yaguo, Arnold, Thomas

Ultraprecise mirror devices show considerable potential with view to applications in the visible and the ultraviolet spectral ranges. Aluminum alloys gather good mechanical and excellent optical properties and thus they emerge as important mirror construction materials. However, ultraprecision machining and polishing of optical aluminum surfaces are challenging, which originates from the high chemical reactivity and the heterogeneous matrix structure. Recently, several ion beam-based techniques have been developed to qualify aluminum mirrors for short-wavelength applications. We give an overview of the state-of-the-art ion beamprocessing techniques for figure error correction and planarization, either by direct aluminum machining or with the aid of polymer or inorganic, amorphous surface films. © The Authors.