Search Results

Now showing 1 - 10 of 18
  • Item
    Profiling water vapor mixing ratios in Finland by means of a Raman lidar, a satellite and a model
    (Katlenburg-Lindau : Copernicus, 2017) Filioglou, Maria; Nikandrova, Anna; Niemelä, Sami; Baars, Holger; Mielonen, Tero; Leskinen, Ari; Brus, David; Romakkaniemi, Sami; Giannakaki, Elina; Komppula, Mika
    We present tropospheric water vapor profiles measured with a Raman lidar during three field campaigns held in Finland. Co-located radio soundings are available throughout the period for the calibration of the lidar signals. We investigate the possibility of calibrating the lidar water vapor profiles in the absence of co-existing on-site soundings using water vapor profiles from the combined Advanced InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU) satellite product; the Aire Limitée Adaptation dynamique Développement INternational and High Resolution Limited Area Model (ALADIN/HIRLAM) numerical weather prediction (NWP) system, and the nearest radio sounding station located 100 km away from the lidar site (only for the permanent location of the lidar). The uncertainties of the calibration factor derived from the soundings, the satellite and the model data are < 2.8, 7.4 and 3.9 %, respectively. We also include water vapor mixing ratio intercomparisons between the radio soundings and the various instruments/model for the period of the campaigns. A good agreement is observed for all comparisons with relative errors that do not exceed 50 % up to 8 km altitude in most cases. A 4-year seasonal analysis of vertical water vapor is also presented for the Kuopio site in Finland. During winter months, the air in Kuopio is dry (1.15±0.40 †kg-1); during summer it is wet (5.54±1.02 †kg-1); and at other times, the air is in an intermediate state. These are averaged values over the lowest 2 km in the atmosphere. Above that height a quick decrease in water vapor mixing ratios is observed, except during summer months where favorable atmospheric conditions enable higher mixing ratio values at higher altitudes. Lastly, the seasonal change in disagreement between the lidar and the model has been studied. The analysis showed that, on average, the model underestimates water vapor mixing ratios at high altitudes during spring and summer.
  • Item
    On the upper tropospheric formation and occurrence of high and thin cirrus clouds during anticyclonic poleward Rossby wave breaking events
    (Milton Park : Taylor & Francis, 2010) Eixmann, Ronald; Peters, Dieter H.W.; Zülicke, Christoph; Gerding, Michael; Dörnbrack, Andreas
    Ground-based lidar measurements and balloon soundings were employed to examine the dynamical link between anticyclonic Rossby wave breaking and cirrus clouds from 13 to 15 February 2006. For this event, an air mass with low Ertel’s potential vorticity appeared over Central Europe. In the tropopause region, this air mass was accompanied with both an area of extreme cold temperatures placed northeastward, and an area of high specific humidity, located southwestward. ECMWF analyses reveal a strong adiabatic northeastward and upward transport of water vapour within the warm conveyor belt on the western side of the ridge over Mecklenburg, Northern Germany. The backscatter lidar at K¨uhlungsborn (54.1◦N, 11.8◦E) clearly identified cirrus clouds at between 9 and 11.4 km height. In the tropopause region high-vertical resolution radiosoundings showed layers of subsaturated water vapour over ice but with a relative humidity over ice >80%. Over Northern Germany radiosondes indicated anticyclonically rotating winds in agreement with backward trajectories of ECMWF analyses in the upper troposphere, which were accompanied by a relatively strong increase of the tropopause height on 14 February. Based on ECMWF data the strong link between the large-scale structure, updraft and ice water content was shown.
  • Item
    Is the near-spherical shape the "new black" for smoke?
    (Katlenburg-Lindau : EGU, 2020) Gialitaki, Anna; Tsekeri, Alexandra; Amiridis, Vassilis; Ceolato, Romain; Paulien, Lucas; Kampouri, Anna; Gkikas, Antonis; Solomos, Stavros; Marinou, Eleni; Haarig, Moritz; Baars, Holger; Ansmann, Albert; Lapyonok, Tatyana; Lopatin, Anton; Dubovik, Oleg; Groß, Silke; Wirth, Martin; Tsichla, Maria; Tsikoudi, Ioanna; Balis, Dimitris
    We examine the capability of near-sphericalshaped particles to reproduce the triple-wavelength particle linear depolarization ratio (PLDR) and lidar ratio (LR) values measured over Europe for stratospheric smoke originating from Canadian wildfires. The smoke layers were detected both in the troposphere and the stratosphere, though in the latter case the particles presented PLDR values of almost 18% at 532 nm as well as a strong spectral dependence from the UV to the near-IR wavelength. Although recent simulation studies of rather complicated smoke particle morphologies have shown that heavily coated smoke aggregates can produce large PLDR, herein we propose a much simpler model of compact near-spherical smoke particles. This assumption allows for the reproduction of the observed intensive optical properties of stratospheric smoke, as well as their spectral dependence. We further examine whether an extension of the current Aerosol Robotic Network (AERONET) scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke cases associated with enhanced PLDR. Results of our study illustrate the fact that triple-wavelength PLDR and LR lidar measurements can provide us with additional insight when it comes to particle characterization. © 2020 Author(s).
  • Item
    Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke
    (Göttingen : Copernicus GmbH, 2018) Haarig, M.; Ansmann, A.; Baars, H.; Jimenez, C.; Veselovskii, I.; Engelmann, R.; Althausen, D.
    We present spectrally resolved optical and microphysical properties of western Canadian wildfire smoke observed in a tropospheric layer from 5-6.5 km height and in a stratospheric layer from 15-16 km height during a recordbreaking smoke event on 22 August 2017. Three polarization/ Raman lidars were run at the European Aerosol Research Lidar Network (EARLINET) station of Leipzig, Germany, after sunset on 22 August. For the first time, the linear depolarization ratio and extinction-to-backscatter ratio (lidar ratio) of aged smoke particles were measured at all three important lidar wavelengths of 355, 532, and 1064 nm. Very different particle depolarization ratios were found in the troposphere and in the stratosphere. The obviously compact and spherical tropospheric smoke particles caused almost no depolarization of backscattered laser radiation at all three wavelengths ( < 3 %), whereas the dry irregularly shaped soot particles in the stratosphere lead to high depolarization ratios of 22% at 355 nm and 18% at 532 nm and a comparably low value of 4% at 1064 nm. The lidar ratios were 40- 45 sr (355 nm), 65-80 sr (532 nm), and 80-95 sr (1064 nm) in both the tropospheric and stratospheric smoke layers indicating similar scattering and absorption properties. The strong wavelength dependence of the stratospheric depolarization ratio was probably caused by the absence of a particle coarse mode (particle mode consisting of particles with radius > 500nm). The stratospheric smoke particles formed a pronounced accumulation mode (in terms of particle volume or mass) centered at a particle radius of 350-400 nm. The effective particle radius was 0.32 μm. The tropospheric smoke particles were much smaller (effective radius of 0.17 μm). Mass concentrations were of the order of 5.5 μgm-3 (tropospheric layer) and 40 μgm-3 (stratospheric layer) in the night of 22 August 2017. The single scattering albedo of the stratospheric particles was estimated to be 0.74, 0.8, and 0.83 at 355, 532, and 1064 nm, respectively.
  • Item
    Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination
    (München : European Geopyhsical Union, 2010) Heese, B.; Flentje, H.; Althausen, D.; Ansmann, A.; Frey, S.
    The potential of a new generation of ceilometer instruments for aerosol monitoring has been studied in the Ceilometer Lidar Comparison (CLIC) study. The used ceilometer was developed by Jenoptik, Germany, and is designed to find both thin cirrus clouds at tropopause level and aerosol layers at close ranges during day and night-time. The comparison study was performed to determine up to which altitude the ceilometers are capable to deliver particle backscatter coefficient profiles. For this, the derived ceilometer profiles are compared to simultaneously measured lidar profiles at the same wavelength. The lidar used for the comparison was the multi-wavelengths Raman lidar PollyXT. To demonstrate the capabilities and limits of ceilometers for the derivation of particle backscatter coefficient profiles from their measurements two examples of the comparison results are shown. Two cases, a daytime case with high background noise and a less noisy night-time case, are chosen. In both cases the ceilometer profiles compare well with the lidar profiles in atmospheric structures like aerosol layers or the boundary layer top height. However, the determination of the correct magnitude of the particle backscatter coefficient needs a calibration of the ceilometer data with an independent measurement of the aerosol optical depth by a sun photometer. To characterizes the ceilometers signal performance with increasing altitude a comprehensive signal-to-noise ratio study was performed. During daytime the signal-to-noise ratio is higher than 1 up to 4–5 km depending on the aerosol content. In our night-time case the SNR is higher than 1 even up to 8.5 km, so that also aerosol layers in the upper troposphere had been detected by the ceilometer.
  • Item
    Vertical aerosol distribution in the southern hemispheric midlatitudes as observed with lidar in Punta Arenas, Chile (53.2° and 70.9° W), during ALPACA
    (Katlenburg-Lindau : EGU, 2019) Foth, Andreas; Kanitz, Thomas; Engelmann, Ronny; Baars, Holger; Radenz, Martin; Seifert, Patric; Barja, Boris; Fromm, Michael; Kalesse, Heike; Ansmann, Albert
    Within this publication, lidar observations of the vertical aerosol distribution above Punta Arenas, Chile (53.2 S and 70.9 W), which have been performed with the Raman lidar PollyXT from December 2009 to April 2010, are presented. Pristine marine aerosol conditions related to the prevailing westerly circulation dominated the measurements. Lofted aerosol layers could only be observed eight times during the whole measurement period. Two case studies are presented showing long-range transport of smoke from biomass burning in Australia and regionally transported dust from the Patagonian Desert, respectively. The aerosol sources are identified by trajectory analyses with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and FLEXible PARTicle dispersion model (FLEXPART). However, seven of the eight analysed cases with lofted layers show an aerosol optical thickness of less than 0.05. From the lidar observations, a mean planetary boundary layer (PBL) top height of 1150 350m was determined. An analysis of particle backscatter coefficients confirms that the majority of the aerosol is attributed to the PBL, while the free troposphere is characterized by a very low background aerosol concentration. The ground-based lidar observations at 532 and 1064 nm are supplemented by the Aerosol Robotic Network (AERONET) Sun photometers and the space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The averaged aerosol optical thickness (AOT) determined by CALIOP was 0:02 0:01 in Punta Arenas from 2009 to 2010. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Validation of Aeolus wind products above the Atlantic Ocean
    (Katlenburg-Lindau : Copernicus, 2020) Baars, Holger; Herzog, Alina; Heese, Birgit; Ohneiser, Kevin; Hanbuch, Karsten; Hofer, Julian; Yin, Zhenping; Engelmann, Ronny; Wandinger, Ulla
    In August 2018, the first Doppler wind lidar in space called Atmospheric Laser Doppler Instrument (ALADIN) was launched on board the satellite Aeolus by the European Space Agency (ESA). Aeolus measures profiles of one horizontal wind component (i.e., mainly the west-east direction) in the troposphere and lower stratosphere on a global basis. Furthermore, profiles of aerosol and cloud properties can be retrieved via the high spectral resolution lidar (HSRL) technique. The Aeolus mission is supposed to improve the quality of weather forecasts and the understanding of atmospheric processes. We used the opportunity to perform a unique validation of the wind products of Aeolus by utilizing the RV Polarstern cruise PS116 from Bremerhaven to Cape Town in November/December 2018. Due to concerted course modifications, six direct intersections with the Aeolus ground track could be achieved in the Atlantic Ocean west of the African continent. For the validation of the Aeolus wind products, we launched additional radiosondes and used the EARLINET/ACTRIS lidar Polly XT for atmospheric scene analysis. The six analyzed cases prove that Aeolus is able to measure horizontal wind speeds in the nearly west-east direction. Good agreements with the radiosonde observations could be achieved for both Aeolus wind products-the winds observed in clean atmospheric regions called Rayleigh winds and the winds obtained in cloud layers called Mie winds (according to the responsible scattering regime). Systematic and statistical errors of the Rayleigh winds were less than 1.5 and 3.3ms-1, respectively, when compared to radiosonde values averaged to the vertical resolution of Aeolus. For the Mie winds, a systematic and random error of about 1ms-1 was obtained from the six comparisons in different climate zones. However, it is also shown that the coarse vertical resolution of 2km in the upper troposphere, which was set in this early mission phase 2 months after launch, led to an underestimation of the maximum wind speed in the jet stream regions. In summary, promising first results of the first wind lidar space mission are shown and prove the concept of Aeolus for global wind observations. © 2020 Author(s).
  • Item
    Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar
    (München : European Geopyhsical Union, 2008) Gerding, M.; Höffner, J.; Lautenbach, J.; Rauthe, M.; Lübken, F.-J.
    Temperature soundings are performed by lidar at the mid-latitude station of Kühlungsborn (Germany, 54° N, 12° E). The profiles cover the complete range from the lower troposphere (~1 km) to the lower thermosphere (~105 km) by simultaneous and co-located operation of a Rayleigh-Mie-Raman lidar and a potassium resonance lidar. Observations have been done during 266 nights between June 2002 and July 2007, each of 3–15 h length. This large and unique data set provides comprehensive information on the altitudinal and seasonal variation of temperatures from the troposphere to the lower thermosphere. The remaining day-to-day-variability is strongly reduced by harmonic fits at constant altitude levels and a representative data set is achieved. This data set reveals a two-level mesopause structure with an altitude of about 86–87 km (~144 K) in summer and ~102 km (~170 K) during the rest of the year. The average stratopause altitude is ~48 km throughout the whole year, with temperatures varying between 258 and 276 K. From the fit parameters amplitudes and phases of annual, semi-annual, and quarter-annual variations are derived. The amplitude of the annual component is largest with amplitudes of up to 30 K in 85 km, while the quarter-annual variation is smallest and less than 3 K at all altitudes. The lidar data set is compared with ECMWF temperatures below about 70 km altitude and reference data from the NRLMSISE-00 model above. Apart from the temperature soundings the aerosol backscatter ratio is measured between 20 and 35 km. The seasonal variation of these values is presented here for the first time.
  • Item
    Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements
    (München : European Geopyhsical Union, 2016) Kienast-Sjögren, Erika; Rolf, Christian; Seifert, Patric; Krieger, Ulrich K.; Luo, Bei P.; Krämer, Martina; Peter, Thomas
    Cirrus, i.e., high, thin clouds that are fully glaciated, play an important role in the Earth's radiation budget as they interact with both long- and shortwave radiation and affect the water vapor budget of the upper troposphere and stratosphere. Here, we present a climatology of midlatitude cirrus clouds measured with the same type of ground-based lidar at three midlatitude research stations: at the Swiss high alpine Jungfraujoch station (3580 m a.s.l.), in Zürich (Switzerland, 510 m a.s.l.), and in Jülich (Germany, 100 m a.s.l.). The analysis is based on 13 000 h of measurements from 2010 to 2014. To automatically evaluate this extensive data set, we have developed the Fast LIdar Cirrus Algorithm (FLICA), which combines a pixel-based cloud-detection scheme with the classic lidar evaluation techniques. We find mean cirrus optical depths of 0.12 on Jungfraujoch and of 0.14 and 0.17 in Zürich and Jülich, respectively. Above Jungfraujoch, subvisible cirrus clouds (τ < 0.03) have been observed during 6 % of the observation time, whereas above Zürich and Jülich fewer clouds of that type were observed. Cirrus have been observed up to altitudes of 14.4 km a.s.l. above Jungfraujoch, whereas they have only been observed to about 1 km lower at the other stations. These features highlight the advantage of the high-altitude station Jungfraujoch, which is often in the free troposphere above the polluted boundary layer, thus enabling lidar measurements of thinner and higher clouds. In addition, the measurements suggest a change in cloud morphology at Jungfraujoch above ∼ 13 km, possibly because high particle number densities form in the observed cirrus clouds, when many ice crystals nucleate in the high supersaturations following rapid uplifts in lee waves above mountainous terrain. The retrieved optical properties are used as input for a radiative transfer model to estimate the net cloud radiative forcing, CRFNET, for the analyzed cirrus clouds. All cirrus detected here have a positive CRFNET. This confirms that these thin, high cirrus have a warming effect on the Earth's climate, whereas cooling clouds typically have cloud edges too low in altitude to satisfy the FLICA criterion of temperatures below −38 °C. We find CRFNET = 0.9 W m−2 for Jungfraujoch and 1.0 W m−2 (1.7 W m−2) for Zürich (Jülich). Further, we calculate that subvisible cirrus (τ < 0.03) contribute about 5 %, thin cirrus (0.03 < τ < 0.3) about 45 %, and opaque cirrus (0.3 < τ) about 50 % of the total cirrus radiative forcing.
  • Item
    Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 2: Experimental campaigns in Northern Africa
    (München : European Geopyhsical Union, 2012) Haustein, K.; Pérez, C.; Baldasano, J.M.; Jorba, O.; Basart, S.; Miller, R.L.; Janjic, Z.; Black, T.; Nickovic, S.; Todd, M.C.; Washington, R.; Müller, D.; Tesche, M.; Weinzierl, B.; Esselborn, M.; Schladitz, A.
    The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (Pérez et al., 2011) develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD) was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6–0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1) in 2006 and the Bodélé Dust Experiment (BoDEx) in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ) and the dust AOD over the Bodélé are well reproduced. The remaining negative AOD bias (due to underestimated surface wind speeds) can be substantially reduced by decreasing the threshold friction velocity in the model.