Search Results

Now showing 1 - 6 of 6
  • Item
    Quantification of waves in lidar observations of noctilucent clouds at scales from seconds to minutes
    (Göttingen : Copernicus, 2013) Kaifler, N.; Baumgarten, G.; Fiedler, J.
    We present small-scale structures and waves observed in noctilucent clouds (NLC) by lidar at an unprecedented temporal resolution of 30 s or less. The measurements were taken with the Rayleigh/Mie/Raman lidar at the ALOMAR observatory in northern Norway (69 N) in the years 2008-2011. We find multiple layer NLC in 7.9% of the time for a brightness threshold of δ β 12 × 10-10 m-1 sr-1. In comparison to 10 min averaged data, the 30 s dataset shows considerably more structure. For limited periods, quasi-monochromatic waves in NLC altitude variations are common, in accord with ground-based NLC imagery. For the combined dataset, on the other hand, we do not find preferred periods but rather significant periods at all timescales observed (1 min to 1 h). Typical wave amplitudes in the layer vertical displacements are 0.2 km with maximum amplitudes up to 2.3 km. Average spectral slopes of temporal altitude and brightness variations are-2.01 ± 0.25 for centroid altitude,-1.41 ± 0.24 for peak brightness and-1.73 ± 0.25 for integrated brightness. Evaluating a new single-pulse detection system, we observe altitude variations of 70 s period and spectral slopes down to a scale of 10 s. We evaluate the suitability of NLC parameters as tracers for gravity waves.
  • Item
    Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999-2008
    (Göttingen : Copernicus, 2011) Kaifler, N.; Baumgarten, G.; Fiedler, J.; Latteck, R.; Lübken, F.-J.; Rapp, M.
    Polar Mesosphere Summer Echoes (PMSE) and Noctilucent Clouds (NLC) have been routinely measured at the ALOMAR research facility in Northern Norway (69° N, 16° E) by lidar and radar, respectively. 2900 h of lidar measurements by the ALOMAR Rayleigh/Mie/Raman lidar were combined with almost 18 000 h of radar measurements by the ALWIN VHF radar, all taken during the years 1999 to 2008, to study simultaneous and common-volume observations of both phenomena. PMSE and NLC are known from both theory and observations to be positively linked. We quantify the occurrences of PMSE and/or NLC and relations in altitude, especially with respect to the lower layer boundaries. The PMSE occurrence rate is with 75.3% considerably higher than the NLC occurrence rate of 19.5%. For overlapping PMSE and NLC observations, we confirm the coincidence of the lower boundaries and find a standard deviation of 1.26 km, hinting at very fast sublimation rates. However, 10.1% of all NLC measurements occur without accompanying PMSE. Comparison of occurrence rates with solar zenith angle reveals that NLC without PMSE mostly occur around midnight indicating that the ice particles were not detected by the radar due to the reduced electron density.
  • Item
    Influence of tides and gravity waves on layering processes in the polar summer mesopause region
    (Göttingen : Copernicus, 2008) Hoffmann, P.; Rapp, M.; Fiedler, J.; Latteck, R.
    Polar Mesosphere Summer Echoes (PMSE) have been studied at Andenes (69° N, 16° E), Norway, using VHF radar observations since 1994. One remarkable feature of these observations is the fact that {during 50% of the time,} the radar echoes occur in the form of two or more distinct layers. In the case of multiple PMSE layers, statistical analysis shows that the lower layer occurs at a mean height of ∼83.4 km, which is almost identical to the mean height of noctilucent clouds (NLC) derived from observation with the ALOMAR Rayleigh/Mie/Raman lidar at the same site. To investigate the layering processes microphysical model simulations under the influence of tidal and gravity waves were performed. In the presence of long period gravity waves, these model investigations predict an enhanced formation of multiple PMSE layer structures, where the lower layer is a consequence of the occurrence of the largest particles at the bottom of the ice cloud. This explains the coincidence of the lowermost PMSE layers and NLC. During periods with enhanced amplitudes of the semidiurnal tide, the observed NLC and PMSE show pronounced tidal structures comparable to the results of corresponding microphysical simulations. At periods with short period gravity waves there is a tendency for a decreasing occurrence of NLC and for variable weak PMSE structures.
  • Item
    On microphysical processes of noctilucent clouds (NLC): Observations and modeling of mean and width of the particle size-distribution
    (Göttingen : Copernicus, 2010) Baumgarten, G.; Fiedler, J.; Rapp, M.
    Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02 for mean particle sizes up to 40 nm. For the vertically resolved particle properties (Δz = Combining double low line 0.15 km) the slope is comparable and about 0.39±0.03. For particles larger than 40 nm the distribution width becomes nearly independent of particle size and even decreases in the lower part of the layer. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements. © 2010 Author(s).
  • Item
    Airborne high spectral resolution lidar observation of pollution aerosol during EUCAARI-LONGREX
    (Göttingen : Copernicus, 2013) Groß, S.; Esselborn, M.; Abicht, F.; Wirth, M.; Fix, A.; Minikin, A.
    Airborne high spectral resolution lidar observations over Europe during the EUCAARI-LONGREX field experiment in May 2008 are analysed with respect to the optical properties of continental pollution aerosol. Continental pollution aerosol is characterized by its depolarisation and lidar ratio. Over all, the measurements of the lidar ratio and the particle linear depolarization ratio of pollution aerosols provide a narrow range of values. Therefore, this data set allows for a distinct characterization of the aerosol type "pollution aerosol" and thus is valuable both to distinguish continental pollution aerosol from other aerosol types and to determine mixtures with other types of aerosols.
  • Item
    Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere
    (Göttingen : Copernicus, 2012) Hildebrand, J.; Baumgarten, G.; Fiedler, J.; Hoppe, U.-P.; Kaifler, B.; Lübken, F.-J.; Williams, B.P.
    During a joint campaign in January 2009, the Rayleigh/Mie/Raman (RMR) lidar and the sodium lidar at the ALOMAR Observatory (69 N, 16 E) in Northern Norway were operated simultaneously for more than 40 h, collecting data for wind measurements in the middle atmosphere from 30 up to 110 km altitude. As both lidars share the same receiving telescopes, the upper altitude range of the RMR lidar and the lower altitude range of the sodium lidar overlap in the altitude region of ≈80-85 km. For this overlap region we are thus able to present the first simultaneous wind measurements derived from two different lidar instruments. The comparison of winds derived by RMR and sodium lidar is excellent for long integration times of 10 h as well as shorter ones of 1 h. Combination of data from both lidars allows identifying wavy structures between 30 and 110 km altitude, whose amplitudes increase with height. We have also performed vertical wind measurements and measurements of the same horizontal wind component using two independent lasers and telescopes of the RMR lidar and show how to use this data to calibrate and validate the wind retrieval. For the latter configuration we found a good agreement of the results but also identified inhomogeneities in the horizontal wind at about 55 km altitude of up to 20 ms-1 for an integration time of nearly 4 h. Such small-scale inhomogeneities in the horizontal wind field are an essential challenge when comparing data from different instruments.