Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Solar spectral conversion for improving the photosynthetic activity in algae reactors

2013, Wondraczek, L., Batentschuk, M., Schmidt, M.A., Borchardt, R., Scheiner, S., Seemann, B., Schweizer, P., Brabec, C.J.

Sustainable biomass production is expected to be one of the major supporting pillars for future energy supply, as well as for renewable material provision. Algal beds represent an exciting resource for biomass/biofuel, fine chemicals and CO2 storage. Similar to other solar energy harvesting techniques, the efficiency of algal photosynthesis depends on the spectral overlap between solar irradiation and chloroplast absorption. Here we demonstrate that spectral conversion can be employed to significantly improve biomass growth and oxygen production rate in closed-cycle algae reactors. For this purpose, we adapt a photoluminescent phosphor of the type Ca 0.59Sr0.40Eu0.01S, which enables efficient conversion of the green part of the incoming spectrum into red light to better match the Qy peak of chlorophyll b. Integration of a Ca 0.59Sr0.40Eu0.01S backlight converter into a flat panel algae reactor filled with Haematococcus pluvialis as a model species results in significantly increased photosynthetic activity and algae reproduction rate.

Loading...
Thumbnail Image
Item

Microstructured optical fiber sensors embedded in a laminate composite for smart material applications

2011, Sonnenfeld, C., Sulejmani, S., Geernaert, T., Eve, S., Lammens, N., Luyckx, G., Voet, E., Degrieck, J., Urbanczyk, W., Mergo, P., Becker, M., Bartelt, H., Berghmans, F., Thienpont, H.

Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures.