Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Distribution of Cracks in a Chain of Atoms at Low Temperature

2021, Jansen, Sabine, König, Wolfgang, Schmidt, Bernd, Theil, Florian

We consider a one-dimensional classical many-body system with interaction potential of Lennard–Jones type in the thermodynamic limit at low temperature 1/β∈(0,∞). The ground state is a periodic lattice. We show that when the density is strictly smaller than the density of the ground state lattice, the system with N particles fills space by alternating approximately crystalline domains (clusters) with empty domains (voids) due to cracked bonds. The number of domains is of the order of Nexp(−βesurf/2) with esurf>0 a surface energy. For the proof, the system is mapped to an effective model, which is a low-density lattice gas of defects. The results require conditions on the interactions between defects. We succeed in verifying these conditions for next-nearest neighbor interactions, applying recently derived uniform estimates of correlations.

Loading...
Thumbnail Image
Item

Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene

2017, Liu, F., Krylov, D.S., Spree, L., Avdoshenko, S.M., Samoylova, N.A., Rosenkranz, M., Kostanyan, A., Greber, T., Wolter, A.U.B., Büchner, B., Popov, A.A.

Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules with strongly coupled lanthanide ions. In this work, endohedral metallofullerenes Y 2 @C 80 and Dy 2 @C 80 are obtained in the form of air-stable benzyl monoadducts. Both feature an unpaired electron trapped between metal ions, thus forming a single-electron metal-metal bond. Giant exchange interactions between lanthanide ions and the unpaired electron result in single-molecule magnetism of Dy 2 @C 80 (CH 2 Ph) with a record-high 100 s blocking temperature of 18 K. All magnetic moments in Dy 2 @C 80 (CH 2 Ph) are parallel and couple ferromagnetically to form a single spin unit of 21 μ B with a dysprosium-electron exchange constant of 32 cm -1. The barrier of the magnetization reversal of 613 K is assigned to the state in which the spin of one Dy centre is flipped.

Loading...
Thumbnail Image
Item

Anharmonic strong-coupling effects at the origin of the charge density wave in CsV3Sb5

2024, He, Ge, Peis, Leander, Cuddy, Emma Frances, Zhao, Zhen, Li, Dong, Zhang, Yuhang, Stumberger, Romona, Moritz, Brian, Yang, Haitao, Gao, Hongjun, Devereaux, Thomas Peter, Hackl, Rudi

The formation of charge density waves is a long-standing open problem, particularly in dimensions higher than one. Various observations in the vanadium antimonides discovered recently further underpin this notion. Here, we study the Kagome metal CsV3Sb5 using polarized inelastic light scattering and density functional theory calculations. We observe a significant gap anisotropy with 2Δmax/kBTCDW≈20, far beyond the prediction of mean-field theory. The analysis of the A1g and E2g phonons, including those emerging below TCDW, indicates strong phonon-phonon coupling, presumably mediated by a strong electron-phonon interaction. Similarly, the asymmetric Fano-type lineshape of the A1g amplitude mode suggests strong electron-phonon coupling below TCDW. The large electronic gap, the enhanced anharmonic phonon-phonon coupling, and the Fano shape of the amplitude mode combined are more supportive of a strong-coupling phonon-driven charge density wave transition than of a Fermi surface instability or an exotic mechanism in CsV3Sb5.

Loading...
Thumbnail Image
Item

Extending Near-Term Emissions Scenarios to Assess Warming Implications of Paris Agreement NDCs

2018, Gütschow, J., Jeffery, M.L., Schaeffer, M., Hare, B.

In the Paris Agreement countries have agreed to act together to hold global warming well below 2°C over preindustrial levels and to pursue efforts to limit warming to 1.5°C. To assess if the world is on track to meet this long-term temperature goal, countries' pledged emissions reductions (Nationally Determined Contributions, NDCs) need to be analyzed for their implied warming. Several research groups and nongovernmental organizations have estimated this warming and arrived at very different results but have invariably concluded that the current pledges are inadequate to hold warming below 2°C, let alone 1.5°C. In this paper we analyze different methods to estimate 2100 global mean temperature rise implied by countries' NDCs, which often only specify commitments until 2030. We present different methods to extend near-term emissions pathways that have been developed by the authors or used by different research groups and nongovernmental organizations to estimate 21st century warming consequences of Paris Agreement commitments. The abilities of these methods to project both low and high warming scenarios in line with the scenario literature is assessed. We find that the simpler methods are not suitable for temperature projections while more complex methods can produce results consistent with the energy and economic scenario literature. We further find that some methods can have a strong high or low temperature bias depending on parameter choices. The choice of methods to evaluate the consistency of aggregated NDC commitments is very important for reviewing progress toward the Paris Agreement's long-term temperature goal.

Loading...
Thumbnail Image
Item

A diuranium carbide cluster stabilized inside a C80 fullerene cage

2018, Zhang, X., Li, W., Feng, L., Chen, X., Hansen, A., Grimme, S., Fortier, S., Sergentu, D.-C., Duignan, T.J., Autschbach, J., Wang, S., Wang, Y., Velkos, G., Popov, A.A., Aghdassi, N., Duhm, S., Li, X., Li, J., Echegoyen, L., Schwarz, W.H.E., Chen, N.

Unsupported non-bridged uranium-carbon double bonds have long been sought after in actinide chemistry as fundamental synthetic targets in the study of actinide-ligand multiple bonding. Here we report that, utilizing I h(7)-C80 fullerenes as nanocontainers, a diuranium carbide cluster, U=C=U, has been encapsulated and stabilized in the form of UCU@I h(7)-C80. This endohedral fullerene was prepared utilizing the Krätschmer-Huffman arc discharge method, and was then co-crystallized with nickel(II) octaethylporphyrin (NiII-OEP) to produce UCU@I h(7)-C80·[NiII-OEP] as single crystals. X-ray diffraction analysis reveals a cage-stabilized, carbide-bridged, bent UCU cluster with unexpectedly short uranium-carbon distances (2.03 Å) indicative of covalent U=C double-bond character. The quantum-chemical results suggest that both U atoms in the UCU unit have formal oxidation state of +5. The structural features of UCU@I h(7)-C80 and the covalent nature of the U(f1)=C double bonds were further affirmed through various spectroscopic and theoretical analyses.