Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Large deviations of specific empirical fluxes of independent Markov chains, with implications for Macroscopic Fluctuation Theory

2017, Renger, D.R. Michiel

We consider a system of independent particles on a finite state space, and prove a dynamic large-deviation principle for the empirical measure-empirical flux pair, taking the specific fluxes rather than net fluxes into account. We prove the large deviations under deterministic initial conditions, and under random initial conditions satisfying a large-deviation principle. We then show how to use this result to generalise a number of principles from Macroscopic Fluctuation Theory to the finite-space setting.

Loading...
Thumbnail Image
Item

Gradient and Generic systems in the space of fluxes, applied to reacting particle systems

2018, Renger, D.R. Michiel

In a previous work we devised a framework to derive generalised gradient systems for an evolution equation from the large deviations of an underlying microscopic system, in the spirit of the Onsager-Machlup relations. Of particular interest is the case where the microscopic system consists of random particles, and the macroscopic quantity is the empirical measure or concentration. In this work we take the particle flux as the macroscopic quantity, which is related to the concentration via a continuity equation. By a similar argument the large deviations can induce a generalised gradient or Generic system in the space of fluxes. In a general setting we study how flux gradient or generic systems are related to gradient systems of concentrations. The arguments are explained by the example of reacting particle systems, which is later expanded to include spatial diffusion as well.

Loading...
Thumbnail Image
Item

Untangling dissipative and Hamiltonian effects in bulk and boundary driven systems

2022, Renger, D. R. Michiel, Sharma, Upanshu

Using the theory of large deviations, macroscopic fluctuation theory provides a framework to understand the behaviour of non-equilibrium dynamics and steady states in emphdiffusive systems. We extend this framework to a minimal model of non-equilibrium emphnon-diffusive system, specifically an open linear network on a finite graph. We explicitly calculate the dissipative bulk and boundary forces that drive the system towards the steady state, and non-dissipative bulk and boundary forces that drives the system in orbits around the steady state. Using the fact that these forces are orthogonal in a certain sense, we provide a decomposition of the large-deviation cost into dissipative and non-dissipative terms. We establish that the purely non-dissipative force turns the dynamics into a Hamiltonian system. These theoretical findings are illustrated by numerical examples.

Loading...
Thumbnail Image
Item

Anisothermal chemical reactions: Onsager--Machlup and macroscopic fluctuation theory

2021, Renger, D. R. Michiel

We study a micro and macroscopic model for chemical reactions with feedback between reactions and temperature of the solute. The first result concerns the quasipotential as the large-deviation rate of the microscopic invariant measure. The second result is an application of modern Onsager-Machlup theory to the pathwise large deviations, in case the system is in detailed balance. The third result is an application of macroscopic fluctuation theory to the reaction flux large deviations, in case the system is in complex balance.