Search Results

Now showing 1 - 3 of 3
  • Item
    A Case for Integrated Data Processing in Large-Scale Cyber-Physical Systems
    (Maui, Hawaii : HICSS, 2019) Glebke, René; Henze, Martin; Wehrle, Klaus; Niemietz, Philipp; Trauth, Daniel; Mattfeld, Patrick; Bergs, Thomas; Bui, Tung X.
    Large-scale cyber-physical systems such as manufacturing lines generate vast amounts of data to guarantee precise control of their machinery. Visions such as the Industrial Internet of Things aim at making this data available also to computation systems outside the lines to increase productivity and product quality. However, rising amounts and complexities of data and control decisions push existing infrastructure for data transmission, storage, and processing to its limits. In this paper, we exemplarily study a fine blanking line which can produce up to 6.2 Gbit/s worth of data to showcase the extreme requirements found in modern manufacturing. We consequently propose integrated data processing which keeps inherently local and small-scale tasks close to the processes while at the same time centralizing tasks relying on more complex decision procedures and remote data sources. Our approach thus allows for both maintaining control of field-level processes and leveraging the benefits of “big data” applications.
  • Item
    3D Self‐Assembled Microelectronic Devices: Concepts, Materials, Applications
    (Hoboke, NJ : Wiley, 2020) Karnaushenko, Daniil; Kang, Tong; Bandari, Vineeth K.; Zhu, Feng; Schmidt, Oliver G.
    Modern microelectronic systems and their components are essentially 3D devices that have become smaller and lighter in order to improve performance and reduce costs. To maintain this trend, novel materials and technologies are required that provide more structural freedom in 3D over conventional microelectronics, as well as easier parallel fabrication routes while maintaining compatability with existing manufacturing methods. Self‐assembly of initially planar membranes into complex 3D architectures offers a wealth of opportunities to accommodate thin‐film microelectronic functionalities in devices and systems possessing improved performance and higher integration density. Existing work in this field, with a focus on components constructed from 3D self‐assembly, is reviewed, and an outlook on their application potential in tomorrow's microelectronics world is provided.
  • Item
    Raman spectroscopy-based identification of toxoid vaccine products
    (Berlin : Nature Publishing, 2018) Silge, Anja; Bocklitz, Thomas W.; Becker, Bjoern; Matheis, Walter; Popp, Jürgen; Bekeredjian-Ding, Isabelle
    Vaccines are complex biomedicines. Manufacturing is time consuming and requires a high level of quality control (QC) to guarantee consistent safety and potency. An increasing global demand has led to the need to reduce time and cost of manufacturing. The evolving concepts for QC and the upcoming threat of falsification of biomedicines define a new need for methods that allow the fast and reliable identification of vaccines. Raman spectroscopy is a non-destructive technology already established in QC of classical medicines. We hypothesized that Raman spectroscopy could be used for identification and differentiation of vaccine products. Raman maps obtained from air-dried samples of combination vaccines containing antigens from tetanus, diphtheria and pertussis (DTaP vaccines) were summarized to compile product-specific Raman signatures. Sources of technical variance were emphasized to evaluate the robustness and sensitivity in downstream data analysis. The data management approach corrects for spatial inhomogeneities in the dried sample while offering a proper representation of the original samples inherent chemical signature. Reproducibility of the identification was validated by a leave-one-replicate-out cross-validation. The results highlighted the high specificity and sensitivity of Raman measurements in identifying DTaP vaccine products. The results pave the way for further exploitation of the Raman technology for identification of vaccines in batch release and cases of suspected falsification.