Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Self‐Patterning of Multifunctional Heusler Membranes by Dewetting

2021, Lünser, Klara, Diestel, Anett, Nielsch, Kornelius, Fähler, Sebastian

Ni-Mn-based Heusler alloys are an emerging class of materials which enable actuation by (magnetic) shape memory effects, magnetocaloric cooling, and thermomagnetic energy harvesting. Multifunctional materials have a particular advantage for miniaturization since their functionality is already built within the material. However, often complex microtechnological processing is required to bring these materials into shape. Here, self-organized formation of single crystalline membranes having arrays of rectangular holes with high aspect ratio is demonstrated. Dewetting avoids the need for complicated processing and allows to prepare freestanding Ni–Mn–Ga–Co membranes. These membranes are martensitic and magnetic, and their functional properties are not disturbed by self-patterning. Feature sizes of these membranes can be tailored by film thickness and heat treatment, and the tendencies can be explained with dewetting. As an outlook, the advantages of these multifunctional membranes for magnetocaloric and thermomagnetic microsystems are sketched. © 2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Thermal stability and phase transformations of martensitic Ti-Nb alloys

2013, Bönisch, Matthias, Calin, Mariana, Waitz, Thomas, Panigrahi, Ajit, Zehetbauer, Michael, Gebert, Annett, Skrotzki, Werner, Eckert, Jürgen

Aiming at understanding the governing microstructural phenomena during heat treatments of Ni-free Ti-based shape memory materials for biomedical applications, a series of Ti-Nb alloys with Nb concentrations up to 29 wt% was produced by cold-crucible casting, followed by homogenization treatment and water quenching. Despite the large amount of literature available concerning the thermal stability and ageing behavior of Ti-Nb alloys, only few studies were performed dealing with the isochronal transformation behavior of initially martensitic Ti-Nb alloys. In this work, the formation of martensites (α′ and α″) and their stability under different thermal processing conditions were investigated by a combination of x-ray diffraction, differential scanning calorimetry, dilatometry and electron microscopy. The effect of Nb additions on the structural competition in correlation with stable and metastable phase diagrams was also studied. Alloys with 24 wt% Nb or less undergo a transformation sequence on heating from room temperature to 1155 K. In alloys containing >24 wt% Nb α″ martensitically reverts back to β0, which is highly unstable against chemical demixing by formation of isothermal ωiso. During slow cooling from the single phase β domain α precipitates and only very limited amounts of α″ martensite form.