Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Supra-Molecular Assemblies of ORAI1 at Rest Precede Local Accumulation into Puncta after Activation

2021, Peckys, Diana B., Gaa, Daniel, Alansary, Dalia, Niemeyer, Barbara A., de Jonge, Niels

The Ca2+ selective channel ORAI1 and endoplasmic reticulum (ER)-resident STIM proteins form the core of the channel complex mediating store operated Ca2+ entry (SOCE). Using liquid phase electron microscopy (LPEM), the distribution of ORAI1 proteins was examined at rest and after SOCE-activation at nanoscale resolution. The analysis of over seven hundred thousand ORAI1 positions revealed a number of ORAI1 channels had formed STIM-independent distinct supra-molecular clusters. Upon SOCE activation and in the presence of STIM proteins, a fraction of ORAI1 assembled in micron-sized two-dimensional structures, such as the known puncta at the ER plasma membrane contact zones, but also in divergent structures such as strands, and ring-like shapes. Our results thus question the hypothesis that stochastically migrating single ORAI1 channels are trapped at regions containing activated STIM, and we propose instead that supra-molecular ORAI1 clusters fulfill an amplifying function for creating dense ORAI1 accumulations upon SOCE-activation.

Loading...
Thumbnail Image
Item

Graphene Enclosure of Chemically Fixed Mammalian Cells for Liquid-Phase Electron Microscopy

2020, Blach, Patricia, Keskin, Sercan, de Jonge, Niels

A protocol is described for investigating the human epidermal growth factor receptor 2 (HER2) in the intact plasma membrane of breast cancer cells using scanning transmission electron microscopy (STEM). Cells of the mammalian breast cancer cell line SKBR3 were grown on silicon microchips with silicon nitride (SiN) windows. Cells were chemically fixed, and HER2 proteins were labeled with quantum dot nanoparticles (QDs), using a two-step biotin-streptavidin binding protocol. The cells were coated with multilayer graphene to maintain a hydrated state, and to protect them from electron beam damage during STEM. To examine the stability of the samples under electron beam irradiation, a dose series experiment was performed. Graphene-coated and non-coated samples were compared. Beam induced damage, in the form of bright artifacts, appeared for some non-coated samples at increased electron dose D, while no artifacts appeared on coated samples.