Search Results

Now showing 1 - 7 of 7
  • Item
    Long-term studies of mesosphere and lower-thermosphere summer length definitions based on mean zonal wind features observed for more than one solar cycle at middle and high latitudes in the Northern Hemisphere
    (Katlenburg, Lindau : Copernicus, 2022) Jaen, Juliana; Renkwitz, Toralf; Chau, Jorge L.; He, Maosheng; Hoffmann, Peter; Yamazaki, Yosuke; Jacobi, Christoph; Tsutsumi, Masaki; Matthias, Vivien; Hall, Chris
    Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (g1/4g54g gN) and northern Norway (g1/4g69g gN). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower-thermosphere summer length (MLT-SL) using SMR and PRR winds and (2) the mesosphere summer length (M-SL) using the PRR and MLS. Under both definitions, the summer begins around April and ends around middle September. The largest year-to-year variability is found in the summer beginning in both definitions, particularly at high latitudes, possibly due to the influence of the polar vortex. At high latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity as well as large-scale atmospheric influences (e.g., quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at middle latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.
  • Item
    Long-term variations of the mesospheric wind field at mid-latitudes
    (München : European Geopyhsical Union, 2007) Keuer, D.; Hoffmann, P.; Singer, W.; Bremer, J.
    Continuous MF radar observations at the station Juliusruh (54.6° N; 13.4° E) have been analysed for the time interval between 1990 and 2005, to obtain information about solar activity-induced variations, as well as long-term trends in the mesospheric wind field. Using monthly median values of the zonal and the meridional prevailing wind components, as well as of the amplitude of the semidiurnal tide, regression analyses have been carried out with a dependence on solar activity and time. The solar activity causes a significant amplification of the zonal winds during summer (increasing easterly winds) and winter (increasing westerly winds). The meridional wind component is positively correlated with the solar activity during summer but during winter the correlation is very small and non significant. Also, the solar influence upon the amplitude of the semidiurnal tidal component is relatively small (in dependence on height partly positive and partly negative) and mostly non-significant. The derived trends in the zonal wind component during summer are below an altitude of about 83 km negative and above this height positive. During the winter months the trends are nearly opposite compared with the trends in summer (transition height near 86 km). The trends in the meridional wind components are below about 85 km positive in summer (significant) and near zero (nonsignificant) in winter; above this height during both seasons negative trends have been detected. The trends in the semidiurnal tidal amplitude are at all heights positive, but only partly significant. The detected trends and solar cycle dependencies are compared with other experimental results and model calculations. There is no full agreement between the different results, probably caused by different measuring techniques and evaluation methods used. Also, different heights and observation periods investigated may contribute to the detected differences.
  • Item
    On the short-term variability of turbulence and temperature in the winter mesosphere
    (Katlenburg, Lindau : Copernicus, 2018-8-15) Lehmacher, Gerald A.; Larsen, Miguel F.; Collins, Richard L.; Barjatya, Aroh; Strelnikov, Boris
    Four mesosphere–lower thermosphere temperature and turbulence profiles were obtained in situ within ∼30 min and over an area of about 100 by 100 km during a sounding rocket experiment conducted on 26 January 2015 at Poker Flat Research Range in Alaska. In this paper we examine the spatial and temporal variability of mesospheric turbulence in relationship to the static stability of the background atmosphere. Using active payload attitude control, neutral density fluctuations, a tracer for turbulence, were observed with very little interference from the payload spin motion, and with high precision (<0.01 %) at sub-meter resolution. The large-scale vertical temperature structure was very consistent between the four soundings. The mesosphere was almost isothermal, which means more stratified, between 60 and 80 km, and again between 88 and 95 km. The stratified regions adjoined quasi-adiabatic regions assumed to be well mixed. Additional evidence of vertical transport and convective activity comes from sodium densities and trimethyl aluminum trail development, respectively, which were both observed simultaneously with the in situ measurements. We found considerable kilometer-scale temperature variability with amplitudes of 20 K in the stratified region below 80 km. Several thin turbulent layers were embedded in this region, differing in width and altitude for each profile. Energy dissipation rates varied between 0.1 and 10 mW kg−1, which is typical for the winter mesosphere. Very little turbulence was observed above 82 km, consistent with very weak small-scale gravity wave activity in the upper mesosphere during the launch night. On the other hand, above the cold and prominent mesopause at 102 km, large temperature excursions of +40 to +70 K were observed. Simultaneous wind measurements revealed extreme wind shears near 108 km, and combined with the observed temperature gradient, isolated regions of unstable Richardson numbers (0
  • Item
    Seasonal variations in the horizontal wind structure from 0-100 km above Rothera station, Antarctica (67° S, 68° W)
    (München : European Geopyhsical Union, 2005) Hibbins, R.E.; Shanklin, J.D.; Espy, P.J.; Jarvis, M.J.; Riggin, D.M.; Fritts, D.C.; Lübken, F.-J.
    A medium frequency spaced-antenna radar has been operating at Rothera station, Antarctica (67° S, 68° W) for two periods, between 1997-1998 and since 2002, measuring winds in the mesosphere and lower thermosphere. In this paper monthly mean winds are derived and presented along with three years of radiosonde balloon data for comparison with the HWM-93 model atmosphere and other high latitude southern hemisphere sites. The observed meridional winds are slightly more northwards than those predicted by the model above 80 km in the winter months and below 80 km in summer. In addition, the altitude of the summer time zero crossing of the zonal winds above the westward jet is overestimated by the model by up to 8 km. These data are then merged with the wind climatology obtained from falling sphere measurements made during the PORTA campaign at Rothera in early 1998 and the HWM-93 model atmosphere to generate a complete zonal wind climatology between 0 and 100 km as a benchmark for future studies at Rothera. A westwards (eastwards) maximum of 44 ms-1 at 67 km altitude occurs in mid December (62 ms-1 at 37 km in mid July). The 0 ms-1 wind contour reaches a maximum altitude of 90 km in mid November and a minimum altitude of 18 km in January extending into mid March at 75 km and early October at 76 km.
  • Item
    Mesospheric semidiurnal tides and near-12 h waves through jointly analyzing observations of five specular meteor radars from three longitudinal sectors at boreal midlatitudes
    (Göttingen : Copernicus GmbH, 2019) He, M.; Chau, J.L.

    In the last decades, mesospheric tides have been intensively investigated with observations from both ground-based radars and satellites. Single-site radar observations provide continuous measurements at fixed locations without horizontal information, whereas single-spacecraft missions typically provide global coverage with limited temporal coverage at a given location. In this work, by combining 8 years (2009-2016) of mesospheric winds collected by five specular meteor radars from three different longitudinal sectors at boreal midlatitudes (49±8.5ĝ N), we develop an approach to investigate the most intense global-scale oscillation, namely at the period TCombining double low line12±0.5 h. Six waves are resolved: The semidiurnal westward-Traveling tidal modes with zonal wave numbers 1, 2, and 3 (SW1, SW2, SW3), the lunar semidiurnal tide M2, and the upper and lower sidebands (USB and LSB) of the 16 d wave nonlinear modulation on SW2. The temporal variations of the waves are studied statistically with a special focus on their responses to sudden stratospheric warming events (SSWs) and on their climatological seasonal variations. In response to SSWs, USB, LSB, and M2 enhance, while SW2 decreases. However, SW1 and SW3 do not respond noticeably to SSWs, contrary to the broadly reported enhancements in the literature. The USB, LSB, and SW2 responses could be explained in terms of energy exchange through the nonlinear modulation, while LSB and USB might previously have been misinterpreted as SW1 and SW3, respectively. Besides, we find that LSB and M2 enhancements depend on the SSW classification with respect to the associated split or displacement of the polar vortex. In the case of seasonal variations, our results are qualitatively consistent with previous studies and show a moderate correlation with an empirical tidal model derived from satellite observations.

    © Author(s) 2019.
  • Item
    Can VHF radars at polar latitudes measure mean vertical winds in the presence of PMSE?
    (Göttingen : Copernicus GmbH, 2019) Gudadze, N.; Stober, G.; Chau, J.L.
    Mean vertical velocity measurements obtained from radars at polar latitudes using polar mesosphere summer echoes (PMSEs) as an inert tracer have been considered to be non-representative of the mean vertical winds over the last couple of decades. We used PMSEs observed with the Middle Atmosphere Alomar Radar System (MAARSY) over Andøya, Norway (69.30°N, 16.04°E), during summers of 2016 and 2017 to derive mean vertical winds in the upper mesosphere. The 3-D vector wind components (zonal, meridional and vertical) are based on a Doppler beam swinging experiment using five beam directions (one vertical and four oblique). The 3-D wind components are computed using a recently developed wind retrieval technique. The method includes full non-linear error propagation, spatial and temporal regularisation, and beam pointing corrections and angular pointing uncertainties. Measurement uncertainties are used as weights to obtain seasonal weighted averages and characterise seasonal mean vertical velocities. Weighted average values of vertical velocities reveal a weak upward behaviour at altitudes ∼ 84-87 km after eliminating the influence of the speed of falling ice. At the same time, a sharp decrease (increase) in the mean vertical velocities at the lower (upper) edges of the summer mean altitude profile, which are attributed to the sampling issues of the PMSE due to disappearance of the target corresponding to the certain regions of motions and temperatures, prevails. Thus the mean vertical velocities can be biased downwards at the lower edge, and the mean vertical velocities can be biased upwards at the upper edge, while at the main central region the obtained mean vertical velocities are consistent with expected upward values of mean vertical winds after considering ice particle sedimentation. © 2019 Author(s). This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    First global observations of the mesospheric potassium layer
    (Hoboken, NJ : Wiley-Blackwell Publishing Ltd, 2014) Dawkins, E.C.M.; Plane, J.M.C.; Chipperfield, M.P.; Feng, W.; Gumbel, J.; Hedin, J.; Höffner, J.; Friedman, J.S.
    Metal species, produced by meteoric ablation, act as useful tracers of upper atmosphere dynamics and chemistry. Of these meteoric metals, K is an enigma: at extratropical latitudes, limited available lidar data show that the K layer displays a semiannual seasonal variability, rather than the annual pattern seen in other metals such as Na and Fe. Here we present the first near-global K retrieval, where K atom number density profiles are derived from dayglow measurements made by the Optical Spectrograph and Infrared Imager System spectrometer on board the Odin satellite. This robust retrieval produces density profiles with typical layer peak errors of ±15% and a 2km vertical grid resolution. We demonstrate that these retrieved profiles compare well with available lidar data and show for the first time that the unusual semiannual behavior is near-global in extent. This new data set has wider applications for improving understanding of the K chemistry and of related upper atmosphere processes. Key Points First quantitative retrieval of the terrestrial K layer from space The unusual semiannual behavior of K is near global in extent.