Search Results

Now showing 1 - 2 of 2
  • Item
    Controlling Surface Wettability for Automated In Situ Array Synthesis and Direct Bioscreening
    (Weinheim : Wiley-VCH, 2021) Lin, Weilin; Gandhi, Shanil; Oviedo Lara, Alan Rodrigo; Thomas, Alvin K.; Helbig, Ralf; Zhang, Yixin
    The in situ synthesis of biomolecules on glass surfaces for direct bioscreening can be a powerful tool in the fields of pharmaceutical sciences, biomaterials, and chemical biology. However, it is still challenging to 1) achieve this conventional multistep combinatorial synthesis on glass surfaces with small feature sizes and high yields and 2) develop a surface which is compatible with solid-phase syntheses, as well as the subsequent bioscreening. This work reports an amphiphilic coating of a glass surface on which small droplets of polar aprotic organic solvents can be deposited with an enhanced contact angle and inhibited motion to permit fully automated multiple rounds of the combinatorial synthesis of small-molecule compounds and peptides. This amphiphilic coating can be switched into a hydrophilic network for protein- and cell-based screening. Employing this in situ synthesis method, chemical space can be probed via array technology with unprecedented speed for various applications, such as lead discovery/optimization in medicinal chemistry and biomaterial development.
  • Item
    Highly immunoreactive IgG antibodies directed against a set of twenty human proteins in the sera of patients with amyotrophic lateral sclerosis identified by protein array
    (San Francisco, CA : Public Library of Science, 2014) May, Caroline; Nordhoff, Eckhard; Casjens, Swaantje; Turewicz, Michael; Eisenacher, Martin; Gold, Ralf; Brüning, Thomas; Pesch, Beate; Stephan, Christian; Woitalla, Dirk; Penke, Botond; Janáky, Tamás; Virók, Dezső; Siklós, László; Engelhardt, Jozsef I.; Meyer, Helmut E.
    Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is characterized by the progressive and selective loss of upper and lower motor neurons. Diagnosis of this disorder is based on clinical assessment, and the average survival time is less than 3 years. Injections of IgG from ALS patients into mice are known to specifically mark motor neurons. Moreover, IgG has been found in upper and lower motor neurons in ALS patients. These results led us to perform a case-control study using human protein microarrays to identify the antibody profiles of serum samples from 20 ALS patients and 20 healthy controls. We demonstrated high levels of 20 IgG antibodies that distinguished the patients from the controls. These findings suggest that a panel of antibodies may serve as a potential diagnostic biomarker for ALS.