Search Results

Now showing 1 - 8 of 8
  • Item
    Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction
    (Berlin : Nature Publishing, 2019) Markwirth, A; Lachetta, Mario; Mönkemöller, V.; Heintzmann, Rainer; Hübner, Wolfgang; Huser, Thomas; Müller, Marcel
    Super-resolved structured illumination microscopy (SR-SIM) is among the fastest fluorescence microscopy techniques capable of surpassing the optical diffraction limit. Current custom-build instruments are able to deliver two-fold resolution enhancement with high acquisition speed. SR-SIM is usually a two-step process, with raw-data acquisition and subsequent, time-consuming post-processing for image reconstruction. In contrast, wide-field and (multi-spot) confocal techniques produce high-resolution images instantly. Such immediacy is also possible with SR-SIM, by tight integration of a video-rate capable SIM with fast reconstruction software. Here we present instant SR-SIM by VIGOR (Video-rate Immediate GPU-accelerated Open-Source Reconstruction). We demonstrate multi-color SR-SIM at video frame-rates, with less than 250 ms delay between measurement and reconstructed image display. This is achieved by modifying and extending high-speed SR-SIM image acquisition with a new, GPU-enhanced, network-enabled image-reconstruction software. We demonstrate high-speed surveying of biological samples in multiple colors and live imaging of moving mitochondria as an example of intracellular dynamics.
  • Item
    Molecular recognition of the native HIV-1 MPER revealed by STED microscopy of single virions
    (Berlin : Nature Publishing, 2019) Carravilla, Pablo; Chojnacki, Jakub; Rujas, Edurne; Insausti, Sara; Largo, Eneko; Waithe, Dominic; Apellaniz, Beatriz; Sicard, Taylor; Julien, Jean-Philippe; Eggeling, Christian; Nieva, José L.
    Antibodies against the Membrane-Proximal External Region (MPER) of the Env gp41 subunit neutralize HIV-1 with exceptional breadth and potency. Due to the lack of knowledge on the MPER native structure and accessibility, different and exclusive models have been proposed for the molecular mechanism of MPER recognition by broadly neutralizing antibodies. Here, accessibility of antibodies to the native Env MPER on single virions has been addressed through STED microscopy. STED imaging of fluorescently labeled Fabs reveals a common pattern of native Env recognition for HIV-1 antibodies targeting MPER or the surface subunit gp120. In the case of anti-MPER antibodies, the process evolves with extra contribution of interactions with the viral lipid membrane to binding specificity. Our data provide biophysical insights into the recognition of the potent and broadly neutralizing MPER epitope on HIV virions, and as such is of importance for the design of therapeutic interventions.
  • Item
    A guide to super-resolution fluorescence microscopy
    (New York, NY : Rockefeller Univ. Press, 2010) Schermelleh, L.; Heintzmann, R.; Leonhardt, H.
    For centuries, cell biology has been based on light microscopy and at the same time been limited by its optical resolution. However, several new technologies have been developed recently that bypass this limit. These new super-resolution technologies are either based on tailored illumination, nonlinear fluorophore responses, or the precise localization of single molecules. Overall, these new approaches have created unprecedented new possibilities to investigate the structure and function of cells. © 2010 Schermelleh et al.
  • Item
    A versatile and customizable low-cost 3D-printed open standard for microscopic imaging
    ([London] : Nature Publishing Group UK, 2020) Diederich, Benedict; Lachmann, René; Carlstedt, Swen; Marsikova, Barbora; Wang, Haoran; Uwurukundo, Xavier; Mosig, Alexander S.; Heintzmann, Rainer
    Modern microscopes used for biological imaging often present themselves as black boxes whose precise operating principle remains unknown, and whose optical resolution and price seem to be in inverse proportion to each other. With UC2 (You. See. Too.) we present a low-cost, 3D-printed, open-source, modular microscopy toolbox and demonstrate its versatility by realizing a complete microscope development cycle from concept to experimental phase. The self-contained incubator-enclosed brightfield microscope monitors monocyte to macrophage cell differentiation for seven days at cellular resolution level (e.g. 2 μm). Furthermore, by including very few additional components, the geometry is transferred into a 400 Euro light sheet fluorescence microscope for volumetric observations of a transgenic Zebrafish expressing green fluorescent protein (GFP). With this, we aim to establish an open standard in optics to facilitate interfacing with various complementary platforms. By making the content and comprehensive documentation publicly available, the systems presented here lend themselves to easy and straightforward replications, modifications, and extensions.
  • Item
    Wavelength dependent characterization of a multimode fibre endoscope
    (Washington D.C. : Optical Society of America, 2019) Pikálek, Tomáš; Tragardh, Johanna; Simpson, Stephen; Čižmár, Tomáš
    Multimode fibres have recently shown promise as miniature endoscopic probes. When used for non-linear microscopy, the bandwidth of the imaging system limits the ability to focus light from broadband pulsed lasers as well as the possibility of wavelength tuning during the imaging. We demonstrate that the bandwidth is limited by the dispersion of the off-axis hologram displayed on the SLM, which can be corrected for, and by the limited bandwidth of the fibre itself. The selection of the fibre is therefore crucial for these experiments. In addition, we show that a standard prism pulse compressor is sufficient for material dispersion compensation for multi-photon imaging with a fibre endoscope.
  • Item
    Label-free CARS microscopy through a multimode fibre endoscope
    (Washington D.C. : Optical Society of America, 2019) Trägårdh, Johanna; Pikálek, Tomáš; Šerý, Mojmír; Meyer, Tobias; Popp, Jürgen; Čižmár, Tomáš
    Multimode fibres have recently been employed as high-resolution ultra-thin endoscopes, capable of imaging biological structures deep inside tissue in vivo. Here, we extend this technique to label-free non-linear microscopy with chemical contrast using coherent anti-Stokes Raman scattering (CARS) through a multimode fibre endoscope, which opens up new avenues for instant and in-situ diagnosis of potentially malignant tissue. We use a commercial 125 µm diameter, 0.29 NA GRIN fibre, and wavefront shaping on an SLM is used to create foci that are scanned behind the fibre facet across the sample. The chemical selectivity is demonstrated by imaging 2 µm polystyrene and 2.5 µm PMMA beads with per pixel integration time as low as 1 ms for epi-detection.Multimode fibres have recently been employed as high-resolution ultra-thin endoscopes, capable of imaging biological structures deep inside tissue in vivo. Here, we extend this technique to label-free non-linear microscopy with chemical contrast using coherent anti-Stokes Raman scattering (CARS) through a multimode fibre endoscope, which opens up new avenues for instant and in-situ diagnosis of potentially malignant tissue. We use a commercial 125 µm diameter, 0.29 NA GRIN fibre, and wavefront shaping on an SLM is used to create foci that are scanned behind the fibre facet across the sample. The chemical selectivity is demonstrated by imaging 2 µm polystyrene and 2.5 µm PMMA beads with per pixel integration time as low as 1 ms for epi-detection.
  • Item
    cellSTORM - Cost-effective Super-Resolution on a Cellphone using dSTORM
    (San Francisco : Public Library of Science, 2019) Diederich, Benedict; Then, Patrick; Jügler, Alexander; Förster, Ronny; Heintzmann, Rainer
    High optical resolution in microscopy usually goes along with costly hardware components, such as lenses, mechanical setups and cameras. Several studies proved that Single Molecular Localization Microscopy can be made affordable, relying on off-the-shelf optical components and industry grade CMOS cameras. Recent technological advantages have yielded consumer-grade camera devices with surprisingly good performance. The camera sensors of smartphones have benefited of this development. Combined with computing power smartphones provide a fantastic opportunity for “imaging on a budget”. Here we show that a consumer cellphone is capable of optical super-resolution imaging by (direct) Stochastic Optical Reconstruction Microscopy (dSTORM), achieving optical resolution better than 80 nm. In addition to the use of standard reconstruction algorithms, we used a trained image-to-image generative adversarial network (GAN) to reconstruct video sequences under conditions where traditional algorithms provide sub-optimal localization performance directly on the smartphone. We believe that “cellSTORM” paves the way to make super-resolution microscopy not only affordable but available due to the ubiquity of cellphone cameras.High optical resolution in microscopy usually goes along with costly hardware components, such as lenses, mechanical setups and cameras. Several studies proved that Single Molecular Localization Microscopy can be made affordable, relying on off-the-shelf optical components and industry grade CMOS cameras. Recent technological advantages have yielded consumer-grade camera devices with surprisingly good performance. The camera sensors of smartphones have benefited of this development. Combined with computing power smartphones provide a fantastic opportunity for “imaging on a budget”. Here we show that a consumer cellphone is capable of optical super-resolution imaging by (direct) Stochastic Optical Reconstruction Microscopy (dSTORM), achieving optical resolution better than 80 nm. In addition to the use of standard reconstruction algorithms, we used a trained image-to-image generative adversarial network (GAN) to reconstruct video sequences under conditions where traditional algorithms provide sub-optimal localization performance directly on the smartphone. We believe that “cellSTORM” paves the way to make super-resolution microscopy not only affordable but available due to the ubiquity of cellphone cameras.
  • Item
    Fluorescence Microscopy of the HIV-1 Envelope
    (Basel : MDPI, 2020) Carravilla, Pablo; Nieva, José L.; Eggeling, Christian
    Human immunodeficiency virus (HIV) infection constitutes a major health and social issue worldwide. HIV infects cells by fusing its envelope with the target cell plasma membrane. This process is mediated by the viral Env glycoprotein and depends on the envelope lipid composition. Fluorescent microscopy has been employed to investigate the envelope properties, and the processes of viral assembly and fusion, but the application of this technique to the study of HIV is still limited by a number of factors, such as the small size of HIV virions or the difficulty to label the envelope components. Here, we review fluorescence imaging studies of the envelope lipids and proteins, focusing on labelling strategies and model systems.