Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Initial phase of the Hans-Ertel Centre for Weather Research - A virtual centre at the interface of basic and applied weather and climate research

2014, Weissmann, Martin, Göber, Martin, Hohenegger, Cathy, Janjic, Tijana, Keller, Jan, Ohlwein, Christian, Seifert, Axel, Trömel, Silke, Ulbrich, Thorsten, Wapler, Kathrin, Bollmeyer, Christoph, Deneke, Hartwig

The Hans-Ertel Centre for Weather Research is a network of German universities, research institutes and the German Weather Service (Deutscher Wetterdienst, DWD). It has been established to trigger and intensify basic research and education on weather forecasting and climate monitoring. The performed research ranges from nowcasting and short-term weather forecasting to convective-scale data assimilation, the development of parameterizations for numerical weather prediction models, climate monitoring and the communication and use of forecast information. Scientific findings from the network contribute to better understanding of the life-cycle of shallow and deep convection, representation of uncertainty in ensemble systems, effects of unresolved variability, regional climate variability, perception of forecasts and vulnerability of society. Concrete developments within the research network include dual observation-microphysics composites, satellite forward operators, tools to estimate observation impact, cloud and precipitation system tracking algorithms, large-eddy-simulations, a regional reanalysis and a probabilistic forecast test product. Within three years, the network has triggered a number of activities that include the training and education of young scientists besides the centre's core objective of complementing DWD's internal research with relevant basic research at universities and research institutes. The long term goal is to develop a self-sustaining research network that continues the close collaboration with DWD and the national and international research community.

Loading...
Thumbnail Image
Item

An AgMIP framework for improved agricultural representation in integrated assessment models

2017, Ruane, Alex C., Rosenzweig, Cynthia, Asseng, Senthold, Boote, Kenneth J., Elliott, Joshua, Ewert, Frank, Jones, James W., Martre, Pierre, McDermid, Sonali P., Müller, Christoph, Snyder, Abigail, Thorburn, Peter J.

Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.