Search Results

Now showing 1 - 6 of 6
  • Item
    Synthesis of Molybdenum Pincer Complexes and Their Application in the Catalytic Hydrogenation of Nitriles
    (Weinheim : Wiley-VCH Verlag, 2020) Leischner, Thomas; Spannenberg, Anke; Junge, Kathrin; Beller, Matthias
    A series of molybdenum(0), (I) and (II) complexes ligated by different PNP and NNN pincer ligands were synthesized and structurally characterized. Along with previously described Mo−PNP complexes Mo-1 and Mo-2, all prepared compounds were tested in the catalytic hydrogenation of aromatic nitriles to primary amines. Among the applied catalysts, Mo-1 is particularly well suited for the hydrogenation of electron-rich benzonitriles. Additionally, two aliphatic nitriles were transformed into the desired products in 80 and 86 %, respectively. Moreover, catalytic intermediate Mo-1a was isolated and its role in the catalytic cycle was subsequently demonstrated. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Tetra­carbonyl-2κ4C-[μ-5-methyl-1,1,3-triphenyl-2-(propan-2-yl)-2,4-di­aza-1,3-diphosphahexan-4-ido-1κN4:2κP1,P3](N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine-1κ2N,N′)lithiummolybdenum
    (Chester : IUCr, 2018) Höhne, Martha; Spannenberg, Anke; Müller, Bernd H.; Peulecke, Normen; Rosenthal, Uwe
    The title complex, [LiMo(C6H16N2)(C24H29N2P2)(CO)4], contains a distorted octa­hedrally coordinated molybdenum centre bearing a li­thia­ted P,P′-cis-chelating PNPN ligand, which results in a nearly planar four-membered metallacycle. The Li atom is coordinated by one equivalent tetra­methyl­ethylenedi­amine. In the crystal, mol­ecules are linked via weak C—H...O inter­actions, forming a chain along the b-axis direction.
  • Item
    Cavity electromechanics with parametric mechanical driving
    ([London] : Nature Publishing Group UK, 2020) Bothner, D.; Yanai, S.; Iniguez-Rabago, A.; Yuan, M.; Blanter, Ya. M.; Steele, G. A.
    Microwave optomechanical circuits have been demonstrated to be powerful tools for both exploring fundamental physics of macroscopic mechanical oscillators, as well as being promising candidates for on-chip quantum-limited microwave devices. In most experiments so far, the mechanical oscillator is either used as a passive element and its displacement is detected using the superconducting cavity, or manipulated by intracavity fields. Here, we explore the possibility to directly and parametrically manipulate the mechanical nanobeam resonator of a cavity electromechanical system, which provides additional functionality to the toolbox of microwave optomechanics. In addition to using the cavity as an interferometer to detect parametrically modulated mechanical displacement and squeezed thermomechanical motion, we demonstrate that this approach can realize a phase-sensitive parametric amplifier for intracavity microwave photons. Future perspectives of optomechanical systems with a parametrically driven mechanical oscillator include exotic bath engineering with negative effective photon temperatures, or systems with enhanced optomechanical nonlinearities.
  • Item
    Tetra­carbon­yl[N-(di­phenyl­phosphanyl-κP)-N,N′-diisoprop­yl-P-phenyl­phospho­rus di­amide-κP]molybdenum(0) with an unknown solvent
    (Chester : IUCr, 2018) Höhne, Martha; Gongoll, Marc; Spannenberg, Anke; Müller, Bernd H.; Peulecke, Normen; Rosenthal, Uwe
    The title complex, [Mo(C24H30N2P2)(CO)4], contains a molybdenum centre bearing a P,P′-cis-chelating Ph2PN(iPr)P(Ph)NH(iPr) and four carbonyl ligands in a distorted octa­hedral coordination geometry. This results in a nearly planar four-membered metallacycle. In the crystal, mol­ecules are linked by N—H...O and C—H...O hydrogen bonds to form layers parallel to the ac plane. For the final refinement, the contributions of disordered solvent mol­ecules were removed from the diffraction data with SQUEEZE in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s).
  • Item
    Tetra­carbon­yl[4,4-dimethyl-2-(pyridin-2-yl)-2-oxazoline-κ2N,N′]molybdenum(0)
    (Chester : IUCr, 2019) Steinlechner, Christoph; Spannenberg, Anke; Junge, Henrik; Beller, Matthias
    In the title compound, [Mo(C10H12N2O)(CO)4], the molybdenum(0) center is surrounded by a bidentate di­imine [4,4-dimethyl-2-(pyridin-2-yl)-2-oxazoline] and four carbonyl ligands in a distorted octa­hedral coordination geometry. The di­imine ligand coordinates via the two nitro­gen atoms.
  • Item
    Symmetry regimes for circular photocurrents in monolayer MoSe2
    (London : Nature Publishing Group, 2018) Quereda, J.; Ghiasi, T.S.; You, J.-S.; van den Brink, J.; van Wees, B.J.; van der Wal, C.H.
    In monolayer transition metal dichalcogenides helicity-dependent charge and spin photocurrents can emerge, even without applying any electrical bias, due to circular photogalvanic and photon drag effects. Exploiting such circular photocurrents (CPCs) in devices, however, requires better understanding of their behavior and physical origin. Here, we present symmetry, spectral, and electrical characteristics of CPC from excitonic interband transitions in a MoSe2 monolayer. The dependence on bias and gate voltages reveals two different CPC contributions, dominant at different voltages and with different dependence on illumination wavelength and incidence angles. We theoretically analyze symmetry requirements for effects that can yield CPC and compare these with the observed angular dependence and symmetries that occur for our device geometry. This reveals that the observed CPC effects require a reduced device symmetry, and that effects due to Berry curvature of the electronic states do not give a significant contribution.