Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Reversibly growing crosslinked polymers with programmable sizes and properties

2023, Zhou, Xiaozhuang, Zheng, Yijun, Zhang, Haohui, Yang, Li, Cui, Yubo, Krishnan, Baiju P., Dong, Shihua, Aizenberg, Michael, Xiong, Xinhong, Hu, Yuhang, Aizenberg, Joanna, Cui, Jiaxi

Growth constitutes a powerful method to post-modulate materials’ structures and functions without compromising their mechanical performance for sustainable use, but the process is irreversible. To address this issue, we here report a growing-degrowing strategy that enables thermosetting materials to either absorb or release components for continuously changing their sizes, shapes, compositions, and a set of properties simultaneously. The strategy is based on the monomer-polymer equilibrium of networks in which supplying or removing small polymerizable components would drive the networks toward expansion or contraction. Using acid-catalyzed equilibration of siloxane as an example, we demonstrate that the size and mechanical properties of the resulting silicone materials can be significantly or finely tuned in both directions of growth and decomposition. The equilibration can be turned off to yield stable products or reactivated again. During the degrowing-growing circle, material structures are selectively varied either uniformly or heterogeneously, by the availability of fillers. Our strategy endows the materials with many appealing capabilities including environment adaptivity, self-healing, and switchability of surface morphologies, shapes, and optical properties. Since monomer-polymer equilibration exists in many polymers, we envision the expansion of the presented strategy to various systems for many applications.

Loading...
Thumbnail Image
Item

Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness

2016, Sahabudeen, Hafeesudeen, Qi, Haoyuan, Glatz, Bernhard Alexander, Tranca, Diana, Dong, Renhao, Hou, Yang, Zhang, Tao, Kuttner, Christian, Lehnert, Tibor, Seifert, Gotthard, Kaiser, Ute, Fery, Andreas, Zheng, Zhikun, Feng, Xinliang

One of the key challenges in two-dimensional (2D) materials is to go beyond graphene, a prototype 2D polymer (2DP), and to synthesize its organic analogues with structural control at the atomic- or molecular-level. Here we show the successful preparation of porphyrin-containing monolayer and multilayer 2DPs through Schiff-base polycondensation reaction at an air-water and liquid-liquid interface, respectively. Both the monolayer and multilayer 2DPs have crystalline structures as indicated by selected area electron diffraction. The monolayer 2DP has a thickness of∼0.7 nm with a lateral size of 4-inch wafer, and it has a Young's modulus of 267±30 GPa. Notably, the monolayer 2DP functions as an active semiconducting layer in a thin film transistor, while the multilayer 2DP from cobalt-porphyrin monomer efficiently catalyses hydrogen generation from water. This work presents an advance in the synthesis of novel 2D materials for electronics and energy-related applications.